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Abstract

Contemporary life bombards us with many new images
of faces every day, which poses non-trivial constraints on
human memory. The vast majority of face photographs are
intended to be remembered, either because of personal rel-
evance, commercial interests or because the pictures were
deliberately designed to be memorable. Can we make a por-
trait more memorable or more forgettable automatically?
Here, we provide a method to modify the memorability of
individual face photographs, while keeping the identity and
other facial traits (e.g. age, attractiveness, and emotional
magnitude) of the individual fixed. We show that face pho-
tographs manipulated to be more memorable (or more for-
gettable) are indeed more often remembered (or forgotten)
in a crowd-sourcing experiment with an accuracy of 74%.
Quantifying and modifying the ‘memorability’ of a face
lends itself to many useful applications in computer vision
and graphics, such as mnemonic aids for learning, photo
editing applications for social networks and tools for de-
signing memorable advertisements.

1. Introduction
April 2016, London. “Will this make me more memo-

rable?” she wonders, playing with the options on her new
smart phone app. Her face on the screen has gotten an in-
stant lift, the expression is somehow more interesting. “This
is for the job application, I want them to remember me.”

One ubiquitous fact about people is that we cannot avoid
evaluating the faces we see in daily life. In fact, we auto-
matically tag faces with personality, social, and emotional
traits within a single glance: according to [28], an emotion-
ally neutral face is judged in the instance it is seen, on traits
such as level of attractiveness, likeability, and aggressive-
ness. However, in this flash judgment of a face, an underly-
ing decision is happening in the brain − should I remember
this face or not? Even after seeing a picture for only half a
second we can often remember it [22]. Face memorability
is in fact a critical factor that dictates many of our social

original image ↑ memorability ↓ memorability 

Figure 1: Examples of modifying the memorability of faces
while keeping identity and other attributes fixed. Despite
subtle changes, there is a significant impact on the memo-
rability of the modified images.

interactions; even if a face seems friendly or attractive, if
it is easily forgotten, then it is meaningless to us. Work in
computer graphics has shown how to select a candid por-
trait from videos [9], or how faces can be slightly adjusted
to look more attractive [18]. With the rapid expansion of so-
cial networks and virtual worlds, we are becoming increas-
ingly concerned with selecting and creating our best selves
− our most remembered selves.

Back to 2013: Can we make a portrait more memorable?
In this work, we show that it is indeed possible to change
the memorability of a face photograph. Figure 1 shows
some photographs manipulated using our method (one in-
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dividual per row) such that each face is more or less mem-
orable than the original photograph, while maintaining the
identity, gender, emotions and other traits of the person. The
changes are subtle, difficult to point out precisely, or even to
describe in words. However, despite these subtle changes,
when testing people’s visual memory of faces, the modi-
fication is successful: after glancing at hundreds of faces,
observers remember better seeing the faces warped towards
memorability, than the ones warped away from it.

It is not immediately intuitive what qualities cause a face
to be remembered. Several memory researchers [24, 26]
have found that measures of distinctiveness are correlated
with memorability, while familiarity is correlated with in-
creased false memories (believing you saw something you
have not seen). Another line of work has discussed the
use of geometric face space models of face distinctive-
ness to test memorability [4]. Importantly, recent research
has found that memorability is a trait intrinsic to images,
regardless of the components that make up memorability
[2, 12, 13]. Thus, a fresh approach looking at memorability
itself rather than its individual components (such as gen-
der or distinctiveness) allows us here to create a method to
change the memorability of a face while keeping identity
and other important facial characteristics (like age, attrac-
tiveness, and emotional magnitude) intact.

To overcome the complex combination of factors that
determine the memorability of a face, we propose a data-
driven approach to modify face memorability. In our
method, we combine the representational power of features
based on Active Appearance Models (AAMs) with the pre-
dictive power of global features such as Histograms of Ori-
ented Gradients (HOG) [6], to achieve desired effects on
face memorability. Our experiments show that our method
can accurately modify the memorability of faces with an
accuracy of 74%.

2. Related Work
Image memorability: Recent work in computer vi-

sion [11, 12, 14] has shown that picture and face memorabil-
ity are largely intrinsic to the image and importantly repro-
ducible across people from diverse backgrounds, meaning
that most of us will tend to remember and forget the same
images. Furthermore, image memorability and the objects
and regions that make a picture more or less memorable
can be estimated using state of the art computer vision ap-
proaches [12, 13, 14] . While predicting image memorabil-
ity lends itself to a wide variety of applications, no work so
far has attempted to automatically predict and modify the
memorability of individual face photographs.

Face modification: The major contribution of this work
is modifying faces to make them more or less memorable.
There has been significant work in modifying faces along
other axes or attributes, such as gender [15], age [17, 23], fa-

cial expressions [1] and attractiveness [18]. However, while
these works focus on intuitive and describable attributes,
our work focuses on a property that is yet not well under-
stood. Further, our method differs from existing works as it
combines powerful global image features such as SIFT [19]
and HOG [6] to make modifications instead of using only
shape and appearance information as done in AAMs [5].

Face caricatures: Work in computer vision and psychol-
ogy has also looked at face caricatures [3, 21], where the
distinctive (i.e., deviant from the physical average) features
of a face are accentuated to create an exaggerated face. The
distinctiveness of a face is known to affect its later recogni-
tion in humans [4], so increasing the memorability of a face
may caricaturize it to some degree. However, unlike face
caricature work, the current study aims to maintain the real-
ism of the faces, by preserving face identity. Recent memo-
rability work finds that distinctiveness is not the sole predic-
tor of face memorability [2], so the algorithm presented in
this paper is likely to change the faces in more subtle ways
than simply enlarging distinctive physical traits.

3. Predicting Face Memorability
As we make changes to a face, we need a model to re-

liably predict its memorability; if we cannot predict mem-
orability, then we cannot hope to modify it in a predictable
way. Thus, in this section, we explore various features for
predicting face memorability and propose a robust mem-
orability metric to significantly improve face memorabil-
ity prediction. We also note that the task of automatically
predicting the memorability of faces using computer vision
features has not been explored in prior works.

In Sec. 3.1 we describe the dataset used in our experi-
ments and the method used to measure memorability scores.
Then, in Sec. 3.2, we describe our robust memorability met-
ric that accounts for false alarms leading to significantly im-
proved prediction performance (Sec 3.3).

3.1. Measuring Memorability

Memorability scores of images are obtained using a vi-
sual memory game, as described in [2, 12]: Amazon Me-
chanical Turk (AMT) workers are presented with a se-
quence of faces, each shown for 1.4 seconds with a 1 second
blank interval, and their task is to press a key when they en-
counter a face they believe they have seen before. The task
is structured in levels of 120 images each and includes a
combination of target images (i.e. images that repeat) and
filler images (i.e. images shown only once). Target image
repeats are spaced 91−109 images apart. A given target im-
age and its repeat are shown toN unique individuals. Of the
N individuals, we define H to be the number of people that
correctly detected the repeat, and F as the number of peo-
ple that false alarmed on the first showing. Based on this,
Bainbridge et al [2] investigated two memorability scores
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Metric Face database [2] Scene database [12]
Human Pred Human Pred

H
N [12] 0.68 0.33 0.75 0.43
(H−F )

N (Ours) 0.69 0.51 0.73 0.45

Table 1: Memorability score with false alarms: Spear-
man’s rank correlation (ρ) using the existing [12] and pro-
posed (Sec. 3.2) memorability score metrics. ‘Human’
refers to human consistency evaluated using 25 train/test
splits of data (similar to [12]), while ‘prediction’ refers
to using support vector regression (SVR) trained on dense
HOG [6] (details in Sec. 3.3).

for an image, (1) the proportion of correct responses , H
N ,

also called the hit rate and (2) the proportion of errors, F
N ,

also called false alarm rate. However, they do not combine
the two scores into a metric that allows for a trade-off be-
tween correct responses and false alarms. We address this
in the following section.

3.2. Memorability Score with False Alarms

As noted in [2], faces tend to have a significantly higher
false alarm rate than scenes [12], i.e. there are certain faces
that a large proportion of people believe they have seen
before which they actually have not. Rather than being
memorable (with high correct detections), these faces are in
fact “familiar” [26] - people are more likely to report hav-
ing seen them, leading to both correct detections and false
alarms. To account for this effect, we propose a slight modi-
fication to the method of computing the memorability score.

To account for the wrong correct detections, we simply
subtract the false alarms from the hit count to get an esti-
mate of the true hit count of an image. Thus, the new mem-
orability score can be computed as H−F

N , unlike H
N as done

in [12] and [2]. Note that H,F ∈ [0, N ], so H−F
N ∈ [−1, 1]

while H
N ∈ [0, 1]. The negative memorability scores can be

easily adjusted to lie in the range [0, 1].
The result of applying the above metric is summarized

in Tbl. 1. To show that our metric is robust, we apply it to
both the face [2] and scene memorability [12] datasets. We
observe that human consistency remains largely the same
in both cases. This is expected as the false alarms tend to
be consistent across participants in the study. Importantly,
we observe that there is a significant increase in the pre-
diction performance from rank correlation of 0.33 to 0.51
for face memorability. By using our new metric, we have
effectively decreased noise in the prediction labels (mem-
orability scores) caused by inflated memorability scores of
familiar images. This allows the learning algorithm to bet-
ter model the statistics of the data that best describe mem-
orability. We note that the performance improvement is not
as large in scenes because the human consistency of false
alarms and the rate of false alarms is significantly lower,
and effects of familiarity may function differently.

age 
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teeth 

age 
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emotion 
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Figure 2: Additional annotation: We annotated 77 facial
landmarks of key geometric points on the face and collected
19 demographic and facial attributes for each image in the
10k US Adult Faces Database1.

We use our proposed memorability score that takes false
alarms into consideration for the remaining experiments in
this paper. Please refer to the supplemental material for ad-
ditional analysis on the proposed metric.

3.3. Prediction experiments

In this section, we describe the additional annotations
we collected (Sec. 3.3.1) to enable better face modification.
Then we describe the setup of our experiments such as the
evaluation metric and features used (Sec. 3.3.2) for the pre-
diction of memorability and other attributes (Sec. 3.3.3).

3.3.1 Additional annotation

In order to modify faces while preserving facial attributes
such as gender and emotion, we need two sets of addi-
tional annotations: (1) facial landmark locations to allow
for the easy modification of faces by moving these key-
points and generating new images through warping, and (2)
facial attribute (e.g., attractiveness, emotion) ratings so we
can keep them fixed. Fig. 2 shows some examples of the ad-
ditional annotation we collected on the 10k US Adult Faces
Database [2]. Note that since we aim to modify faces in-
stead of detect keypoints, we assume that landmark annota-
tion is available at both train and test times. Locating these
landmarks is a well-studied problem and we could obtain
them using various automatic methods [5, 29] depending on
the application. In our work, the landmarks were annotated
by experts to ensure high consistency across the dataset.

To collect the facial attributes, we conducted a separate
AMT survey similar to [16], where each of the 2222 face
photographs was annotated by twelve different workers on
19 demographic and facial attributes of relevance for face
memorability and face modification. We collected a variety
of attributes including demographics such as gender, race
and age, physical attributes such as attractiveness, facial
hair and make up, and social attributes such as emotional
magnitude and friendliness. These attributes are required
when modifying a face so we can attempt to keep them con-
stant or modify them jointly with memorability, as required
by the user.

1Additional information, data and supplemental material available at:
http://facemem.csail.mit.edu
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3.3.2 Setup

Dataset: In our experiments, we use the 10k US Adult
Faces Database [2] that consists of 2222 face photographs
annotated with memorability scores.

Evaluation: The prediction performance is evaluated ei-
ther using Spearman’s rank correlation (ρ) for real-valued
attributes, and accuracy for discrete-valued attributes. We
evaluate the performance on 25 random train/test splits of
the data (as done in [12]) with an equal number of images
for training and testing. For memorability, the train splits
are scored by one half of the participants and the test splits
are scored by the other half with a human consistency of
ρ = 0.69. This can be thought of as an upper bound on the
performance we can hope to achieve.

Features: We use similar features as [14] for our ex-
periments, namely the color naming feature [25], local bi-
nary pattern (LBP) [20], dense HOG2x2 [6] and dense
SIFT [19]. For the bag-of-words features (i.e., color, HOG
and SIFT), we sample descriptors at multiple scales and
learn a dictionary of codewords using K-means cluster-
ing. Then we use Locality-constrained Linear Coding
(LLC) [27] to assign descriptors to codewords, and apply
max-pooling with 2 spatial pyramid levels to obtain the final
feature vector. Similarly, we use a 2-level spatial pyramid
for the non-uniform LBP descriptor. In addition, we also
use the coordinates of the ground-truth landmark annota-
tions (shown in Fig. 2) normalized by image size as ‘shape’
features.

Model: For discrete-valued attributes, we apply a one-
vs-all linear support vector machine (SVM) [8], while for
real-valued attributes, we apply support vector regression
(SVR) [7]. The hyperparameters, C (for SVM/SVR) and ε
(for SVR), are found using cross-validation.

3.3.3 Memorability and attribute prediction

Tbl. 2 summarizes the prediction performance of face mem-
orability and other attributes when using various features.
For predicting memorability, dense global features such as
HOG and SIFT significantly outperform landmark-based
features such as ‘shape’ by about 0.15 rank correlation.
This implies that it is essential to use these features in our
face modification algorithm to robustly predict memorabil-
ity after making modifications to a face. While powerful
for prediction, the dense global features tend to be compu-
tationally expensive to extract, as compared to shape. As
described in Sec. 4.2, shape is used in our algorithm to
parametrize faces so it essentially has zero cost of extrac-
tion for modified faces.

Similar to memorability prediction, we find that dense
global features tend to outperform shape features for most
attributes. However, as compared to memorability, the gap
in performance between using shape features and dense fea-

Color LBP HOG SIFT Shape[25] [20] [6] [19]
age (0) 0.52 0.64 0.72 0.77 0.68
attractive (0) 0.46 0.51 0.59 0.62 0.54
emoteMag (0) 0.49 0.64 0.80 0.83 0.88
makeup (3) 0.80 0.81 0.84 0.84 0.80
is male (2) 0.86 0.89 0.93 0.94 0.91
teeth (3) 0.56 0.58 0.71 0.72 0.77
memorability 0.27 0.23 0.51 0.49 0.36

Table 2: Prediction performance of memorability and
other attributes: The number in the parantheses indicates
the number of classes for the particular attribute, where 0
means that the attribute is real-valued. For real-valued at-
tributes and memorability, we report Spearman’s rank cor-
relation (ρ), while for discrete valued attributes such as
‘male’, we report classification accuracy. The reported per-
formance is averaged on 25 random train/test splits of the
data. Additional results provided in supplemental material.

tures is not as large for other attributes. This might suggest
why, unlike our method, existing methods [17, 18] typi-
cally use landmark-based features instead of dense global
features for the modification of facial attributes.

4. Modifying Face Memorability
In order to modify a face photograph, we must first de-

fine an expressive yet low-dimensional representation of
a face. We need to parametrize a face such that we can
synthesize new, realistic-looking faces. Since faces have
a largely rigid structure, simple methods such as Principal
Component Analysis (PCA) e.g. AAMs [5] tend to work
fairly well. In Sec. 4.1, we describe a method based on
AAMs where we represent faces using two distinct features,
namely shape and appearance.

While the above parametrization is extremely powerful
and allows us to modify a given face along various dimen-
sions, we require a method to evaluate the modifications in
order to make predictable changes to a face. Our objective
is to modify the memorability score of a face, while pre-
serving the identity and other attributes such as age, gender,
emotions, etc of the individual. We encode these require-
ments in a cost function as described in Sec. 4.2. Specifi-
cally, our cost function consists of three terms: (1) the cost
of modifying the identity of the person, (2) the cost of not
achieving the desired memorability score, and (3) the cost
of modifying other attributes. By minimizing this cost func-
tion, we can achieve the desired effect on the memorability
of a face photograph.

As highlighted in Sec. 3.3.3, it is crucial to use dense
global features when predicting face memorability. These
features tend to be highly non-convex in our AAM param-
eter space, making it difficult to optimize the cost function
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exactly. Thus, we propose a sampling-based optimization
procedure in Sec. 4.3 that leverages the representational
power of AAMs with the predictive power of dense global
features in a computationally efficient manner.

4.1. Representation

Using facial landmark-based annotations (described in
Sec. 3.3) in the form of AAMs is a common method for
representing faces for modification because it provides an
expressive, and low-dimensional feature space that is re-
versible, i.e., we can recover an image easily after moving
in this feature space. AAMs typically have two components
to represent a face, namely shape (xs) and appearance (xa).

To obtain xs, we first compute the principal components
of the normalized landmark locations2 across the datasets.
Then, for a particular image, xs is given as the coefficients
of these principal components. Similarly, to obtain xa, we
first warp all the faces to the mean shape and apply PCA
to the concatenated RGB values of the resulting image3

(resized to a common size). Then, xa for a given image
is given by the coefficients of these principal components.
Thus, the full parametrization of a face, x, can be written
as x = [xs xa], i.e., the concatenation of shape and appear-
ance features. We can now modify x and use the learned
principal components to synthesize a new face.

When applying the above parametrization to faces, we
observed that there were significant distortions when warp-
ing a face, and a high reconstruction error even without any
modification (despite keeping 99.5% of the principal com-
ponents). To improve the reconstruction, we cluster the nor-
malized facial landmarks and apply PCA independently to
each cluster. Further, as shown in Fig. 2, images in the
10k US Adult Faces Database contain an ellipsoid around
them to minimize the background effects on memorability,
so we added uniformly spaced landmarks along the bound-
ary to constrain the warping in order to obtain more realis-
tic results. We evaluate the effects of these modifications to
AAM in Sec. 5.3.

4.2. Cost function

In order to modify a face to a desired memorability score
while preserving identity and other facial attributes, we de-
fine a cost function with the following three terms:

• Cid: Cost of modifying the identity

• Cmem: Cost of not attaining the desired memorability

• Cattr: Cost of modifying facial attributes such as age,
attractiveness, emotional magnitude, etc

2The 77 normalized landmark locations are concatenated to form a 154
dimensional shape vector.

3As there could be components of appearance outside the face region
such as hair that we would like to be able to modify, we use the entire
image instead of just the face pixels (as is typically done).

We parametrize the above terms using the shape and appear-
ance based representation, x, described in Sec. 4.1. Then,
our optimization objective is:

min
x

Cid(x) + λCmem(x) + γCattr(x) (1)

where λ and γ are hyperparameters to control the relative
importance of the three terms in the cost function.

Before defining the above terms explicitly, we define
some common terminology. Let F define the set of image
features (e.g. HOG [6] or SIFT [19]) andA, the set of facial
attributes (e.g., is male or are teeth visible). Then we define
mi(x) as a function to predict the memorability score of an
image represented by PCA coefficients x computed using
feature i ∈ F . Similarly, we define fi,j(x) as a function to
predict the value of attribute j ∈ A of an image defined by
PCA coefficients x, computed using feature i ∈ F . Note
that the landmark-based features can be directly obtained
from x, while there is an implicit conversion from the PCA
coefficients x to an image before extracting dense global
features. For brevity, we do not write this transformation
explictly. In our experiments, mi and fi,j are obtained us-
ing linear SVR/SVM as described in Sec. 3.3.2.

Now, given an image Î that we want to modify, our goal
is to synthesize a new image I that has a memorability score
of M (specified by the user) and preserves the identity and
other facial attributes of the original image Î . Representing
the PCA coefficients of Î by x̂, our objective is to find the
PCA coefficients x that represent I . Since landmark esti-
mation is outside the scope of this work, we assume that the
landmark annotations required to obtain x̂ are available at
both train and test time.

Based on this problem setup, we define the terms from
Eqn. 1 as the following three equations (Eqn. 2, 3, 4):

Cid(x) = [w · (x− x̂)]2 (2)

wherew is the weight vector for preserving identity, learned
using a Support Vector Machine (SVM) trained on the orig-
inal image Î as positive, and the remaining images in the
dataset as negatives.

Cmem(x) =
∑
i∈F

ci
|F |

(mi(x)−M)2 (3)

where ci represents the confidence of predictor mi, and can
be estimated using cross-validation. Since the performance
of different features on memorability prediction varies sig-
nificantly (Sec. 3.3), we weight the difference between M
and mi by the confidence score ci to increase the impor-
tance of better performing features. Overall, this function
penalizes the memorability score of the new image x if it
does not match the desired memorability score, M .
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Cattr(x) =
∑
i∈F

∑
j∈A

ci,j
|F | · |A|

(fi,j(x)− fi,j(x̂))2 (4)

where ci,j is the confidence of predictor fi,j , and can be
estimated using cross-validation. The above function com-
putes the distance between the estimated attribute value of
the original image fi,j(x̂) and the new image fi,j(x). Addi-
tionally, a user could easily modify the relative importance
of different attributes in the above cost function.

Overall, Cid and Cattr encourage the face to remain the
same as Î whileCmem encourages the face to be modified to
have the desired memorability score ofM . By adjusting the
hyperparameters appropriately, we can achieve the desired
result on memorability.

4.3. Optimization

While the terms in the objective function defined in
Eqn. 1 look deceptively simple, we note that the func-
tion is actually highly complex and non-linear because of
the dense global features such as HOG or SIFT involving
histograms, bag-of-words and max-pooling. Thus, typical
gradient-based approaches hold little promise in this case,
and finding a local minimum is the best we can hope for.

The basic idea of our algorithm is fairly straightforward:
we want to find x given x̂; since x is expected to look like
x̂, we initialize x = x̂. Then, we randomly sample4 some
points at some fixed distance d from x. From the set of
random samples, we find the sample that best minimizes
the objective function and use that as our new x. We now
repeat the procedure by finding samples at distance d

2 from
x. We include the initial value of x as one of the samples in
each iteration to ensure that the objective function always
decreases. By iteratively reducing d, we can find a local
minimum of our objective close to x̂.

However, we observe that the computational cost of fea-
ture extraction differs significantly between dense global
features and landmark-based features; dense global fea-
tures require the synthesis of a new image based on x, and
the subsequent extraction of features while landmark-based
features such as shape and appearance can be trivially ob-
tained from x. Note that the dense global features play a sig-
nificant role in accurate memorability prediction (Sec. 3.3),
so we must include them in our algorithm. Since it is com-
putationally expensive to compute dense global features for
all samples, this severly restricts the total number of sam-
ples considered per iteration, making it difficult to find a
good solution, or even one better than x̂.

4In practice, we fit a multivariate Gaussian to the PCA coefficients of
the training images (similar to [18]), and obtain random samples from this
distribution. Given a random sample p, we find a point at distance d from
x that lies in the direction p− x.

To overcome the computational bottleneck, we propose a
two-step procedure: (1) for a large number of samples, eval-
uate the cost function ignoring the terms involving dense
global features, and (2) obtain a small subset of the best
scoring samples from step (1) and rescore them using the
full cost function. In this way, we can obtain a better solu-
tion by pruning the space using a computationally efficient
estimation of the cost function, and later rescoring a small
set of samples using the full cost function to find the best
sample for our final result. Please refer to the supplemen-
tary material for additional details.

5. Experiments
In this section, we describe the experimental evaluation

of our memorability modification algorithm. Specifically,
we describe the experimental setup in Sec. 5.1, the results
obtained in Sec. 5.2 and additional analysis of our algorithm
in Sec. 5.3. Overall, we find that our algorithm modifies
74% of the images accurately, and our result is statistically
significant with a p-value of < 10−4.

5.1. Setup

Our goal is to evaluate whether our algorithm is able to
modify the memorability of faces in a predictable way. In
order to do this, we use the face memory game [2]: we de-
signed two balanced experiments where, for the first exper-
iment, we increase the memorability of half the target im-
ages and decrease the memorability of the other half, and
vice versa for the other (modified versions of the same tar-
get images are used in both experiments). Then we compare
the memorability scores of the modified images; if the mean
memorability of the set of images whose memorability was
increased is higher than the decreased set, we can conclude
that our algorithm is accurately modifying memorability.

Specifically, we randomly sample 505 of the 2222 target
images from the 10k US Adult Faces Database and use them
as targets, and the remaining as fillers in our experiments.
We ensure that the set of participants in the two studies is
disjoint, i.e., a participant does not see both high/low mod-
ifications of a single target. On average, we obtained 63
scores per image in each of the experiments.

Algorithmic details: We set the hyperparameters λ =
10, and γ = 1 and use the PCA features together with
dense HOG2x2 [6] and SIFT [19] features as described in
Sec. 3.3.2. The target images were modified to have a mem-
orability score that differs by 0.2 from the original in the ap-
propriate direction. To account for warping effects, the filler
images are also modified by random scores in the range
[−0.1, 0.1] and are identical for both sets of experiments.

5.2. Memorability Modification Results

Fig. 3 summarizes the quantitative results from the mem-
orability games described in Sec. 5.1. In Fig. 3(a), we show
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the overall memorability scores of all target images after the
two types of modifications (i.e., memorability increase and
decrease) sorted independently. We observe that the mean
memorability score ‘memorability increase’ images is sig-
nificantly higher than that of the ‘memorability decrease’
images. We perform a one-tailed paired sample t-test and
find that the null hypothesis that the means are equal is re-
jected with a p value of< 10−4 for both sets of experiments,
indicating that our results are statistically significant.

Fig. 3(b) shows the difference in memorability scores of
individual images; for a given image we subtract the ob-
served memorability of the version modified to have lower
memorability image from that of the version modified to
have higher memorability. We find that the expected change
in memorability (> 0) occurs in about 74% of the images
(chance is 50%). This is a fairly high value given our limited
understanding of face memorability and the factors affect-
ing it. We also observe that the increase in memorability
scores is much larger in magnitude than the decrease.

Fig. 5 shows qualitative results of modifying images
to have higher and lower memorability, together with the
memorability scores obtained from our experiments. While
we observe that the more memorable faces tend to be more
‘interesting’, there is no single modification axis such as
distinctiveness, age, etc, that leads to more or less memo-
rable faces. Essentially, our data-driven approach is effec-
tively able to identify the subtle elements of a face that af-
fect its memorability and apply those effects to novel faces.

5.3. Analysis

To investigate the contribution of shape and appearance
features to face memorability, we conduct a second AMT
study similar to the one described in Sec. 5.1, except that
we only modify shape features in this case. We found that
the accuracy of obtaining the expected change in memora-
bility, as described in Sec. 5.2, dropped to 60%. In addition,
the changes in memorability scores were not as significant
in this case as compared to the original setting. This shows
that a combination of shape and appearance features are im-
portant for modifying memorability; however, it is interest-
ing to note that despite the limited degree of freedoms, our
algorithm achieved a reasonable modification accuracy.

Fig. 4 shows the effect of having clusters in the AAM
as described in Sec. 4.1. We find that having more clusters
allows us to have better reconstructions without significant
sacrifice in memorability prediction performance. Thus, we
choose to use 8 clusters in our experiments. Lastly, since
changes in memorability lead to unintuitive modifications
to faces, in Fig. 6, we apply our algorithm to modify other
attributes whose effects are better understood. Indeed, we
observe that the algorithm is behaving as per our expecta-
tions. Please refer to the supplemental material for more
modification results and additional analysis.

100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

sorted image index

m
em

or
ab

ilit
y 

sc
or

e

 

 

memorability increase
memorability decrease

(a) Overall memorability scores

100 200 300 400 500
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

sorted image index

ch
an

ge
 in

 m
em

or
ab

ilit
y 

sc
or

e
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Figure 3: Quantitative results: (a) Memorability scores
of all images in the increase/decrease experimental settings,
and (b) change in memorability scores of individual images.
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Figure 4: Analysis: Figure showing (a) reconstruction er-
ror, and (b) memorability prediction performance as we
change the number of clusters in AAM. With and without
circle refers to having control points on the image boundary
when doing warping.

6. Conclusion
Memorability quantification and modification lends it-

self to several innovative applications in the fields of com-
puter vision and graphics, marketing and entertainment, and
social networking. For instance, for animated films, movies,
or video games, one could imagine animators creating car-
toon characters with different levels of memorability [10]
or make-up artists making any actor a highly memorable
protagonist surrounded by forgettable extras.

Importantly, the current results show that memorability
is a trait that can be manipulated like a facial emotion,
changing the whole face in subtle ways to make it look
more distinctive and interesting. These memorability trans-
formations are subtle, like an imperceptible “memory face
lift.” These modified faces are either better remembered or
forgotten after a glance, depending on our manipulation.
Here we show we can create, in a static photograph, a first
impression that lasts.
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↑ 0.69 ↓ 0.31 ↑ 0.66 ↓ 0.40 

↑ 0.61 ↓ 0.38 ↑ 0.64 ↓ 0.45 

↑ 0.61 ↓ 0.74 

↑ 0.38 ↓ 0.52 ↑ 0.39 ↓ 0.27 

↑ 0.82 ↓ 0.64 

Figure 5: Visualizing modification results: Figure showing success (green background) and failure (red background) cases
of the modification together with memorability scores from human experiments. Arrow direction indicates which face is
expected to have higher or lower memorability of the two while numbers indicate the actual memorability scores.

original ↑ age ↓ age original ↑ attractive ↓ attractive original ↑ friendly ↓ friendly 

Figure 6: Modifying other attributes: We increase/decrease other attributes such as age, attractiveness and friendliness.
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