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Although people’s past experiences and overall memory abil-
ity tend to vary1, human observers consistently remember 
some stimuli better than others2–4. For example, with just a 

single viewing, some face and scene images are found to be easily 
remembered while others are easily forgotten4–6. This attribute of 
each visual image has been referred to as its memorability, and the 
memorability of different images can account for as much as half of 
the overall variance in visual recognition performance across indi-
viduals4. Notably, the memorability of visual images cannot simply 
be explained by variations in lower-level stimulus features such as 
colour or spatial frequency5. Stimulus memorability also does not 
appear to depend on an observer’s level of engagement with a mem-
ory task, such as their attention or level of processing7, or on their 
familiarity with or subjective preference for a particular item4.

While it is not known why some items are more memorable 
than others, recent neuroimaging studies have shown that activa-
tion patterns in the ventral processing stream can reliably differen-
tiate memorable from forgettable images even in the absence of an 
explicit memory task5,8,9. Thus, it is possible that the memorability of 
visual stimuli may reflect an intrinsic stimulus property that bridges 
both perceptual processing and memory formation7. In this case, 
memorable images can be more efficiently perceived, encoded and 
recognized5,8,9. This framework suggests that stimulus memorability 
may play a critical role in mnemonic representations and processes 
beyond other factors that have traditionally been found to affect 
memory performance, such as task context10,11 and an observer’s 
emotional state12,13.

However, despite these recent findings, contemporary studies 
of memorability have largely been limited to investigating the role 
of memorability in the recognition of single items. This raises the 
question of whether memorability is only a phenomenon that arises 
during perception. The extent to which stimulus memorability 

may affect recall, when the to-be-remembered task content is not 
explicitly perceived, is less clear14. As opposed to recognition, recall 
critically relies on our ability to form and remember associations 
between items15. Once formed, these associations provide a pow-
erful cue for recalling items from memory, even when no percep-
tual information is available regarding the to-be-retrieved memory 
content16. It remains unclear whether stimulus memorability can 
also affect memory retrieval based on this recall process, given that 
memorability of associative task content has received surprisingly 
little attention in the literature.

Here, we use a paired associates verbal memory task to investigate 
the role of stimulus memorability in associative memory retrieval. 
Our goal is to investigate whether stimulus memorability can suf-
ficiently influence memory retrieval, even when successful retrieval 
of an item occurs in the absence of its perceptual representation and 
instead is primarily driven by the association formed between the 
item and its retrieval cue. We use verbal stimuli in this study to take 
advantage of the highly associative nature of verbal content17 and to 
additionally ask whether memorability is also a stimulus property of 
words, and therefore semantic concepts, rather than strictly visual 
images. We examine data captured from 30 participants with tem-
poral lobe intracranial electrodes placed for seizure monitoring, and 
complement these data with online crowd-sourced findings from 
2,623 participants recruited through the Amazon Mechanical Turk 
experimental platform. In both cases, we find that certain words are 
more successfully recalled across participants—and are therefore 
more memorable—even when paired with arbitrary retrieval cues.

Next, we construct a computational model to characterize the 
memorability of each word based on intrinsic semantic properties of 
the words themselves. In this model, we hypothesize that semantic 
relationships among words influence how a word is retrieved from 
memory16,18–20. Because some words tend to be semantically more 
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interconnected with others, they may serve as prior locations in the 
semantic network to initiate a more efficient memory search during 
retrieval21. As a result, these words would emerge earlier during the 
memory search process, making them less susceptible to cumula-
tive mnemonic interference, and hence more memorable. We test 
several core predictions that emerge from this hypothesis. First, 
computationally, observed memorability of a word should be pre-
dicted by a memory search model metric that captures how likely it 
is that a word would be searched given any arbitrary retrieval cues. 
Second, behaviourally, memorable words should be more rapidly 
reported, as they tend to come to mind more easily. However, this 
would also imply that memorable words can lead to more intru-
sion errors when retrieval fails. Last, neurally, successful retrieval 
of memorable words should involve rapid reactivation of initially 
encoded memory content recorded by intracranial electrodes in 
semantically imbued brain regions, such as the anterior temporal 
lobe (ATL)22. Together, by testing these predicted effects of stimulus 
memorability on associative memory retrieval using computational 
modelling, as well as behavioural and electrophysiological data, 
this study adds theoretical and empirical insights to the research 
of human memory and the emerging literature on memorability7.

Results
Memorability of words in arbitrary verbal associations. Thirty 
participants (ten females; 32.73 ± 1.93 years old (mean ± s.e.m.); 
Supplementary Table 1) with implanted intracranial electroen-
cephalogram (iEEG) electrodes studied lists of six arbitrary pairs 
of words in a paired associates verbal memory task. For each par-
ticipant, the word pairs in each list were constructed by randomly 
sampling words from a pool of 300 common nouns23,24; thus, these 
word pairs were not identical across participants. Following each 
study list and a distraction period (∼20 s), we presented one word 
from each pair as a retrieval cue in a random order, and partici-
pants attempted to recall the paired word (that is, retrieval target; 
Fig. 1a). Participants on average completed 216 ± 16 total trials and 
successfully retrieved the correct word on 30.22 ± 4.15% of trials, 
while vocalizing an incorrect word or intrusion on 17.01 ± 2.89% of 
trials (see also Supplementary Tables 2–4).

To evaluate whether certain target words were successfully 
recalled across participants, we examined the split-half consistency 
of memorability estimates of the words in the current study using a 
resampling procedure4. In brief, in each of 5,000 iterations, we split 
the retrieval data across participants into random halves. In each 
half, we calculated the probability of successful memory recall for 
each target word across participants. This provided an estimate of 
memorability for each word when it was the retrieval target. We 
calculated the Spearman–Brown25,26 corrected rank-order correla-
tions (ρ) of the memorability estimates across all words between 
the two random halves to quantify the split-half consistency in each 
iteration. If words that were remembered by one half of the partici-
pants also tended to be remembered by the other half, the split-half 
consistency measure across iterations should be a positive value on 
average27. Therefore, we used a one-tailed test to evaluate this pre-
diction by comparing the mean of split-half correlation coefficients 
(Fisher’s Z-transformed Spearman correlation) across 5,000 itera-
tions against surrogate correlation coefficients calculated by shuf-
fling the word ranks in one of the halves (Fig. 1b). We found that 
this mean estimate of split-half correlation coefficients was signifi-
cantly larger than surrogate correlation coefficients in the 30 iEEG 
participants (ρz = 0.19; bootstrapped 95% confidence interval (CI): 
0.01 to 0.40; P = 0.035; one tailed; Fig. 1b).

We further confirmed that the memorability of individual 
target words was conserved across participants by performing 
the same analysis using data captured from an online Amazon 
Mechanical Turk study. In this study, 2,623 participants (1,556 
female; 36.27 ± 0.30 years old) performed the paired associates  

verbal memory task with the same word pairs. On average, they 
successfully retrieved the target words on 51.65 ± 0.68% trials. In 
this online sample, we also found that the memorability of the 
retrieval target words was consistent across split halves of the par-
ticipants, in that the mean of split-half correlations across 5,000 
iterations was significantly larger than the correlations observed 
using surrogate word ranks (ρz = 0.23; bootstrapped 95% CI: 0.06 
to 0.44; P = 0.011; one tailed; Fig. 1b). Critically, we performed 
a correlation analysis between the memorability of words in the 
two datasets and found that words that were more memorable as 
retrieval targets in the iEEG sample were also more memorable in 
the online sample (ρ = 0.20; 95% CI: 0.09 to 0.31; P = 0.00047; two 
tailed; n = 300 words). These data suggest that words, when used as 
retrieval targets and paired with arbitrary retrieval cues from the 
word pool, reliably vary in their levels of memorability. This obser-
vation was not limited by the clinical characteristics of patients 
with epilepsy in the iEEG sample.

Modelling memorability of words in arbitrary verbal associations. 
To account for the observations above, we modelled the memora-
bility of target words in the paired associates memory task. In our 
model, we assume that associative memory retrieval involves a 
search process, and that this process follows a sampling rule based 
on how semantically similar a target word is to a cue word. This 
semantic similarity property between target and cue words was 
referred to as the matching strength in previous memory search 
models16,20. According to these models, the likelihood of search-
ing a target word based on a retrieval cue is the ratio of the given 
cue-and-target matching strength relative to the sum of the match-
ing strengths of the cue with all possible search targets (equation (1); 
see Methods). Building on this likelihood function, the memorabil-
ity of a target word can then be formally defined as the aggregated 
likelihood of retrieving a certain target word given any arbitrary 
retrieval cues (equation (3)). That is, a more memorable target word 
should have a stronger relative matching strength on average with 
any other words.

We simulated this model by calculating the semantic similarity 
between every two words as a proxy for their matching strength18,28. 
To do so, we represented each word as a feature vector defined 
by the Global Vectors (GloVe) for word representation29. Based 
on aggregated global word–word co-occurrence statistics in large 
text corpuses (for example, Wikipedia, newspapers and books), 
the GloVe uses an unsupervised learning algorithm to estimate 
structures of a word’s vector space in the natural linguistic envi-
ronment29. The cosine similarity between word vectors may then 
provide an effective method for measuring the semantic similarity 
(equation (2)), and hence matching strength, of the correspond-
ing words18. Accordingly, a more memorable target word that has 
a stronger relative matching strength on average with any other 
words should locate more centrally in a semantic space. Based on 
these measures, we modelled the predicted memorability of each 
target word using the cue words that were randomly chosen in the 
current study (Fig. 2a).

We found that the predicted memorability estimates from our 
model were significantly correlated with the observed memorabil-
ity values of the 300 words in both the iEEG sample (ρ = 0.20; 95% 
CI: 0.09 to 0.30; P = 0.00057; two tailed) and the online sample 
(ρ = 0.21; 95% CI: 0.10 to 0.31; P = 0.00029; two tailed; Fig. 2b). 
Next, we evaluated several alternative accounts to check whether 
the observed memorability of words could be better explained 
by other lower-level word features, such as concreteness ratings30 
and word frequency (ranked in the Corpus of Contemporary 
American English)31. As shown in multiple regression analy-
ses that included all predictors simultaneously in a model (see  
Table 1 and Supplementary Tables 5 and 6 for additional details), 
the predicted memorability estimates explained a significant 
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amount of variance in the observed memorability scores in both 
the iEEG sample (β = 0.19; 95% CI: 0.06 to 0.32; t(296) = 2.97; 
P = 0.0033; two tailed) and the online sample (β = 0.18; 95% 
CI: 0.05 to 0.30; t(296) = 2.79; P = 0.0056; two tailed). However, 
we did not observe significant evidence that word frequency or 
concreteness could predict observed memorability of words (see 
Table 1 for details).

Memorability of words in arbitrary verbal associations modulates 
memory retrieval. Given that relative matching strength appeared 
to account for the observed memorability of the retrieved target 
words, we hypothesized that words with higher overall matching 
strength should be more readily available during the retrieval search 
process. We therefore tested core behavioural and neural predic-
tions that directly emerged from this hypothesis.
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of group 2 (surrogate data). Bottom: the mean of the split-half correlation coefficients across 5,000 iterations was significantly larger than the surrogate 
(null) distributions in both the iEEG sample (mean ρz = 0.19; bootstrapped 95% CI: 0.01 to 0.40; P = 0.035; one tailed) and in the online sample (mean 
ρz = 0.23; bootstrapped 95% CI: 0.06 to 0.44; P = 0.011; one tailed). The red lines indicate the mean of the split-half correlation coefficients across 5,000 
iterations. The black dashed lines indicate the mean of the surrogate data.

Arbitrary cues

(Q, j to M)

a

Word GloVe

Targets

(I, i to N )

GloVe Word

TEABOY

FLAG

WOOD

Matching
strength (S)

b

Mem(Ii)  ≈  ∑M
j P (Ii ∣ Qj) P(Qj)

P (Ii ∣ Qj) = f (S )

0

Predicted memorability (×10–4)

0

0.5

1.0

O
bs

er
ve

d 
m

em
or

ab
ili

ty

iEEG sample

0

0.5

1.0
Online sample

642 0

Predicted memorability(×10–4)

642

ρ = 0.21 (0.10 to 0.31)ρ = 0.20 (0.09 to 0.30)

Fig. 2 | Modelling the memorability of target words in arbitrary verbal associations based on the matching strength of words. a, The likelihood that a 
cue word, Qj (j = 1 to M), leads to the retrieval of a target word, Ii (I = 1 to N), is a function of the semantic similarity, or matching strength, between Qj and 
Ii (see Methods). We modelled the semantic similarity between words using the vectorized word features based on GloVe values29. Memorability of the 
target word Ii, Mem(Ii), can thus be approximated by the aggregated likelihood of successful retrieval cued by any arbitrary words in the available semantic 
space. b, The predicted memorability estimates based on our computational model correlate with the observed memorability in both the iEEG sample  
(left; ρ = 0.20; 95% CI: 0.09 to 0.30; P = 0.00057; two tailed) and the online sample (right; ρ = 0.21; 95% CI: 0.10 to 0.31; P = 0.00029; two tailed).  
Solid lines represent linear fits of the data, and the dashed lines represent 95% CIs of the linear fit.

Nature Human Behaviour | www.nature.com/nathumbehav

http://www.nature.com/nathumbehav


Articles NaTurE Human BEhaviour

Memorable words are reported faster. First, we tested the prediction 
that if memorable items are more readily available during memory 
search, those items should be retrieved more quickly irrespective of 
recall accuracy. To test this prediction, we correlated participants’ 
trial-by-trial response times and observed memorability scores of 
the vocalized words in the iEEG sample. We limited this analy-
sis to participants who had responded to more than ten words to 
obtain a better estimate of the rank-order correlation (range of trial 
counts: 11–265 trials; on average, 115 ± 13 trials per participant; see 
Supplementary Table 2). Using a resampling test at the subject level 
(random effect), we found that target word memorability was sig-
nificantly correlated with shorter response times across participants 
in the iEEG sample (Fisher’s Z-transformed Spearman correlation: 
ρz = −0.06; bootstrapped 95% CI: −0.09 to −0.03; P = 0.00040; two 
tailed; n = 27; Fig. 3a; see also Extended Data Fig. 1). Similar analy-
ses limited to correct trials only (ρz = −0.03; bootstrapped 95% CI: 
−0.09 to 0.02; P = 0.23; two tailed) or intrusion trials only (ρz = 0.12; 
bootstrapped 95% CI: −0.01 to 0.24; P = 0.060; two tailed) did not 
yield statistically significant results. Nonetheless, these results sug-
gest that the response time of associative memory retrieval is mod-
ulated by the memorability of the vocalized items, and that both 
correctly and incorrectly vocalized items are critical aspects of the 
overall memory search process that reveal this association.

Memorable words can lead to more intrusion errors. Next, we tested 
the potential cost of target word memorability on memory retrieval. 
If highly memorable verbal content is indeed more readily available 
during memory search, memorable non-target words should more 
easily intrude into the mind when the retrieval of a target word fails. 
We tested this prediction by comparing the average observed mem-
orability of intruded words for each participant with the median 
observed memorability of all words from the word pool. We again 
limited our analysis to only those iEEG participants who had more 
than ten intrusion trials, to obtain a reasonable estimate of memo-
rability for the intruded items (range of trial counts: 13–93 trials; on 
average, 37 ± 4 trials per participant; see Supplementary Table 3).  
Using a resampling test at the subject level (random effect), we 
found that the average memorability of the intruded words across 
participants (0.366; bootstrapped 95% CI: 0.357 to 0.373; n = 21) 
was significantly higher than the median memorability of the 
entire word pool (0.353; bootstrapped P = 0.0016; two tailed; com-
plementary one-sample t-test: t(20) = 3.25; P = 0.0040; two tailed; 
requivalent = 0.59 (0.21 to 0.81); Fig. 3b). We further confirmed that 
higher memorability also led to greater intrusions for the online 
participants. To reduce the influence of the shorter online experi-
ment (three study-and-test lists; ∼5 min in duration; see Methods) 
on a lower likelihood of intrusions, we counted the total number 
of intrusions for each word across participants, normalized by 
the number of times the word was presented in the entire study, 
and correlated this measure with the observed memorability of 
each word. We found that the probability of a word intruding on 
retrieval was significantly correlated with the memorability of the 

word for the online participants (ρ = 0.13; 95% CI: 0.02 to 0.24; 
P = 0.026; two tailed).

Memorable targets are reinstated earlier during memory retrieval. 
Finally, we were interested in examining whether the memorability 
of the target words was related to the iEEG data. Previous evidence 
has shown that successful memory retrieval involves reinstating 
patterns of neural activity that were present during encoding32,33. If 
the memorability of the target words guides memory search, target 
word memorability should be related to how quickly neural rein-
statement arises during memory retrieval. To examine this predic-
tion, we first used patterns of iEEG power distributed across five 
frequency bands in all electrodes in the ATL and posterior temporal 
lobe (PTL), to compute neural reinstatement between every encod-
ing and retrieval time point in every trial (200-ms windows; 20-ms 
steps; Fig. 4a,b; see Methods). Similar to previous reports32,33, we 
observed greater neural reinstatement during correct compared 
with incorrect trials in both the ATL and PTL immediately before 
recall vocalization (Fig. 4c,e). Based on group-level comparisons 
(corrected for the family-wise error rate using permutation tests at 
the α = 0.05 level; see Methods), we identified an encoding temporal 
region of interest (tROI) that could reliably differentiate correct ver-
sus incorrect recall trials, separately for the ATL (420–2,460 ms after 
cue onset) and PTL (220–3,700 ms after cue onset). We then aver-
aged the measures of neural reinstatement across these group-level 
encoding tROIs to generate a continuous time measure of neural 
reinstatement across different retrieval time points for each partici-
pant (Fig. 4d,f). Post hoc comparisons confirmed that these neu-
ral reinstatement values, averaged across encoding tROIs and the 
retrieval period from the probe onset to the median response time, 
were significantly higher in the correct (relative to incorrect) trials 
in both the ATL (t(18) = 3.39; P = 0.0032; two tailed; requivalent = 0.62  
(0.23 to 0.84)) and PTL (t(17) = 4.23; P = 0.00056; two tailed;  
requivalent = 0.72 (0.38 to 0.89)).

For correct trials, we then divided all of the target words into 
memorable and forgettable words based on a median split of mem-
orability values across the entire word pool, and separately calcu-
lated their continuous time measures of neural reinstatement in 
the ATL and PTL (Fig. 5a,c). We found that the overall temporal 
profile of neural reinstatement for memorable words, compared 
with forgettable ones, emerged earlier during the retrieval period in 
the ATL (Fig. 5a). We computed the latency required to reach 50% 
of the area under each time series of neural reinstatement34, and 
found that in the ATL memorable items had a 50% fractional area 
latency that was significantly shorter than that for forgettable items 
(bootstrapped means for 50% fractional area latency: 905 versus 
1,050 ms; n = 19; bootstrapped 95% CI of latency difference: −300 
to −20 ms; P = 0.040; two tailed; Fig. 5b). Complementing this, we 
found that the time series of reinstatement also exhibited significant 
differences in the peak latency between memorable and forgettable 
items in the ATL (jack-knife peak latency35: 765 versus 1,264 ms; 
t(18) = 2.26; P = 0.036; two tailed; requivalent = 0.47 (0.02 to 0.76)).  

Table 1 | Multiple regression analyses on observed memorability scores

Observed memorability of 300 words

iEEG sample (n = 30) Online sample (n = 2,623)

β (95% CI) P (two tailed) β (95% CI) P (two tailed)

Predicted memorability 0.19 (0.06 to 0.32) 0.0033 0.18 (0.05 to 0.30) 0.0056

Word frequencya −0.09 (−0.21 to 0.03) 0.16 −0.03 (−0.15 to 0.10) 0.68

Concretenessb −0.004 (−0.12 to 0.11) 0.94 0.09 (−0.02 to 0.21) 0.11
aBased on values ranked in the Corpus of Contemporary American English in ascending order (that is, a smaller value means higher word frequency)31. bBased on values from a large-scale word-rating study. 
Higher values indicate a more concrete meaning30.
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However, we observed no evidence for a statistically significant dif-
ference in the temporal profiles of neural reinstatement in the PTL 
between memorable and forgettable target words (bootstrapped 
means for 50% fractional area latency: 887 versus 897 ms; n = 18; 
bootstrapped 95% CI of latency difference: −80 to 60 ms; P = 0.63; 
two tailed; jack-knife peak latency: 606 versus 558 ms; t(17) = 0.81; 
P = 0.43; two tailed; requivalent = 0.21 (−0.29 to 0.61); Fig. 5c,d). 
Critically, among participants who had both ATL and PTL elec-
trodes (n = 18), the differences in latency measures between memo-
rable and forgettable target words were significantly greater in the 
ATL than in the PTL (bootstrapped 50% fractional area latency: 
P = 0.031; one tailed; jack-knife peak latency: t(17) = 2.47; P = 0.012; 
one tailed; requivalent = 0.51 (0.06 to 0.79)).

These data suggest that trials with memorable target words show 
earlier reinstatement of neural activity. We therefore further investi-
gated this relationship between target word memorability and neu-
ral reinstatement by examining trial-by-trial neural reinstatement 
profiles during an early (between 25 and 50% of the response time 
on a trial) and a late (between 75 and 100% of the response time 
on a trial) retrieval time window (Fig. 6a,b). If memorable items 
involve earlier reinstatement, the difference in neural reinstate-
ment between memorable and forgettable items should be more 
pronounced in the early retrieval time window. However, the later 
retrieval time window may be dominated by other factors, such as 
those related to searching for alternative items, deciding to stop 
memory search, or response preparation. All of these factors may 
be unrelated to the memorability of the target words. Indeed, across 
participants and trials (range of trial counts: 14–242 trials; on aver-
age, 76 ± 14 trials per participant; Supplementary Table 4), we found 
that neural reinstatement in the ATL was significantly correlated 
with target word memorability in the early retrieval time window 
(ρz = 0.07; bootstrapped 95% CI: 0.02 to 0.13; P = 0.0092; two tailed; 
n = 19), but not in the late retrieval time window (ρz = −0.03; boot-
strapped 95% CI: −0.14 to 0.07; P = 0.60; two tailed; n = 19). Across 
18 participants who had PTL electrodes, we found no significant 
evidence for a correlation between target word memorability and 
neural reinstatement patterns in the PTL (see Fig. 6c and Extended 
Data Fig. 2), either in the early (ρz = 0.004; bootstrapped 95% CI: 
−0.06 to 0.07; P = 0.92; two tailed) or late (ρz = −0.01; bootstrapped 

95% CI: −0.09 to 0.06; P = 0.89; two tailed) retrieval time windows. 
We captured these spatial (ATL versus PTL) and temporal (early 
versus late response time windows) distinctions in the relationship 
between target word memorability and neural reinstatement using 
a focal one-tailed contrast analysis36, which allowed us to test only 
one set of outcomes to avoid omnibus arguments and multiple com-
parisons36,37. We found a significantly stronger correlation between 
target word memorability and neural reinstatement in the early 
retrieval time window in the ATL compared with all other condi-
tions (see Methods for details; n = 18; bootstrapped P = 0.0016; one 
tailed; t contrast: t(17) = 2.88; P = 0.0050; one tailed; requivalent = 0.57 
(0.14 to 0.82); see Fig. 6c and Extended Data Fig. 2). These findings 
provide strong evidence that early neural reinstatement in the ATL 
is related to target word memorability as participants successfully 
retrieve associative verbal content.

Discussion
Using a paired associates verbal memory task across two different 
samples of participants, we found that certain words are more likely 
to be successfully retrieved, irrespective of the arbitrary cues used 
to initiate memory retrieval. Our computational model, which is 
grounded in semantic similarity among words, well characterizes 
the memorability of words and makes several core predictions sup-
ported by behavioural and neural data. That is, more memorable 
items are retrieved faster, can lead to more intrusion errors, and 
exhibit faster dynamics of neural reinstatement in brain regions that 
are closely involved in semantic cognition such as the ATL22. Taken 
together, these converging findings advance our understanding of 
stimulus memorability and provide insights into how the human 
brain prioritizes certain information to facilitate memory retrieval.

Memorability as a mnemonic phenomenon has been stud-
ied throughout the history of psychology3,38, but only recently has 
research leveraged findings from stimulus memorability to under-
stand the relationship between memory and perception7. Our results 
advance this line of research in several ways. First, most studies of 
memorability have focused on visual recognition. Here, we show 
that associative memory recall, which is normally dominated by a 
search process based on a retrieval cue, can also be modulated by 
the memorability of the target item. Second, moving beyond visual 
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recognition, the current paired associates verbal memory task offers 
a clear separation between perceptual input and retrieved memory 
content. Our data suggest that memorability of a target item is rel-
evant for memory retrieval even in the absence of any perceptual 
information regarding the target. Finally, extending previous obser-
vations in visual memorability, our data suggest that, like images, 
words can also be characterized by their memorability. This memo-
rability property of words is governed by their semantic structure, 
such that memorable words tend to be more centrally located 
within a semantic space. Collectively, our results add to the growing  

literature on memorability7, which may subsequently have broader 
implications for developing better materials used for educational39, 
commercial40 or clinical41 purposes.

Similar to previous studies in the verbal domain, we approxi-
mated the extent to which a retrieval target matches a cue using the 
semantic similarity between them18. Based on this approximation, 
our results provide direct evidence that high-dimensional patterns 
of verbal features that are present in the natural linguistic environ-
ment29 can give rise to variations in the memorability of words. 
Consequently, the memorability of a word is related to the semantic  
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similarity between that word and all other words, as opposed to 
other lower-level verbal features of a single word such as concrete-
ness or word frequency21,30,42,43. An important theoretical contribu-
tion of our work, then, is in providing a formal mathematical model 
that well characterizes the memorability of words that emerges from 
the natural linguistic environment. This model may further provide 
a stable base for reaching upward towards a broader understanding 
of memorability for other complex and highly associative natural 
stimuli, such as content-rich images and videos44.

An equally important contribution of our work is in providing 
insights into the process of memory search. Models of associa-
tive memory posit that the retrieval of associative content occurs 
through a search process that is guided by the similarity between 
a target item and its retrieval cue, referred to as the matching 
strength between them16,18–20. We observed converging behavioural 

and neural evidence that stimulus memorability can influence 
this search process. Rather than initiating memory search with 
a random walk as assumed by traditional models45, our findings 
suggest that memory search begins in regions of the search space 
where memorable items reside. In this manner, memorability may 
be an important phenomenon for supporting optimum foraging 
during memory retrieval18,46. This may be particularly relevant for 
recall when the to-be-retrieved memory content is not perceptu-
ally available, and for other higher cognitive functions that criti-
cally rely on information sampling, such as fluid intelligence and 
memory-based decisions47.

Behaviourally, our mathematical model describing the memora-
bility of words as their relative matching strength with any arbitrary 
retrieval cues provides two core predictions. First, if memory search 
indeed begins with memorable words, it should take a shorter time to 

c

a

Retrieval (ms)

0

0.05

0.10

C
os

in
e 

si
m

ila
rit

y 

0

0.05

0.10

C
os

in
e 

si
m

ila
rit

y 

% of response time

20

40

60

80

100

%
 o

f A
U

C

0 1,000 2,000 20 40 60 80 100

Retrieval (ms) % of response time

0 1,000 2,000 20 40 60 80 100

20

40

60

80

100

%
 o

f A
U

C

Forgettable

Memorable

b

d

Fig. 5 | Neural reinstatement is faster for memorable items in the ATL. a, Temporal profiles of ATL neural reinstatement during the tROI in the encoding 
phase across different retrieval time points for correct memorable (red) and forgettable (blue) target words. The peak time points of the average 
reinstatement neural profiles are marked as dot-dashed vertical lines in respective colours, and the response time averaged from participants’ median 
response time across trials is plotted as a black dashed line. The solid line at 0 indicates cue onset. b, Fractional area measured as a function of response 
time (normalized by the average response time of participants) in the ATL, with the 50% fractional area latency marked by the dashed horizontal grey 
line. c, PTL neural reinstatement profiles for correct memorable (red) and forgettable (blue) target words, similar to a. d, Fractional area measured as a 
function of response time for neural reinstatement profiles in the PTL, similar to b. All error bars (shaded areas) indicate bootstrapped standard errors 
across participants across 5,000 iterations. Note that measures of fractional area latency and peak latency are complementary to each other. In general, 
memorable targets tend to be reinstated earlier during the retrieval time window in the ATL (bootstrapped means for 50% fractional area latency: 905 
versus 1,050 ms; n = 19; bootstrapped 95% CI of latency difference: −300 to −20 ms; P = 0.040; two tailed; jack-knife peak latency35: 765 versus 1,264 ms; 
t(18) = 2.26; P = 0.036; two tailed; requivalent = 0.47 (0.02 to 0.76)). AUC, area under the curve.

Nature Human Behaviour | www.nature.com/nathumbehav

http://www.nature.com/nathumbehav


Articles NaTurE Human BEhaviour

recall memorable words compared with forgettable ones48. Considering 
that both correctly recalled items and incorrect intrusions reflect the 
overall memory search process, this predicted relationship between 
word memorability and response time may exist when correct and 
incorrect recall trials are combined. Our behavioural data support this 
prediction. Second, if memory search begins with memorable items, 
memorable items should also more easily intrude into the search pro-
cess when retrieval fails. Our data showing that intruded items have a 
higher level of memorability support this prediction. Therefore, these 
behavioural observations suggest that memorable and forgettable 
words indeed differ in their retrieval profiles.

Neurally, using iEEG, our data further reveal the fine-scale neural 
dynamics underlying the retrieval search process of memorable words 
in the human brain. Successful memory retrieval entails reinstate-
ment of neural patterns of activity that were present during encod-
ing32,33,49. Our model provides a core prediction regarding this process 
of neural reinstatement. Namely, if memory search prioritizes memo-
rable items, memorable target words should more rapidly trigger 
reinstatement of the original memory experience to support success-
ful recall. The finding that successful retrieval of memorable, relative 
to forgettable, items shows faster neural reinstatement supports this 
prediction. Critically, we observed the relationship between target 
word memorability and the speed of neural reinstatement in correct 
trials only, thus separating stimulus-driven memorability properties 
from generic individual differences in overall memory ability5.

Furthermore, we also found that the observed relationship 
between neural reinstatement and target word memorability was 
primarily localized to the ATL but not the PTL. This observation 
is consistent with the prediction from our model that memorability 
of associative verbal content is driven by the structural relationship 
among interconnected semantic representations. According to this 
prediction, temporal differences in neural reinstatement between 
the retrieval of memorable and forgettable words should be more 
pronounced in semantically imbued brain regions such as the ATL22. 
However, this does not necessarily imply that memorability effects 
for all associative task content are specific to the ATL. For example, 
our current observation may simply reflect the dominant role of the 
ATL in semantic cognition in general22. Meanwhile, the PTL may 
be more sensitive to the memorability of associative visual content, 
given the critical role of the ventral stream in visual processing5. 

Alternatively, the ATL may serve a generic role for linking associa-
tive task content independent of the modality of a stimulus50. In this 
case, while the PTL may be involved in semantic representation at 
the single-item level51,52, the ATL may play a larger role in associa-
tive representations. Future research can articulate these issues to 
better understand how the human brain processes memorability of 
relational information from different sensory inputs.

Although our data show that stimulus memorability can indeed 
modulate associative memory retrieval, it should be noted that the 
focus of our analyses has been on the memorability of target words 
in arbitrary verbal associations. This is fundamentally different 
from the memorability of the arbitrary verbal associations them-
selves. While the former addresses the degree to which certain items 
can be more successfully remembered in associative memory, the 
latter is directly related to the degree to which pairs of items are 
more memorable. Future research utilizing a smaller, exhaustive set 
of associative pairs may reveal further memorability phenomena in 
associative memory. It should also be noted that the current study 
has collapsed data across left and right ATLs in the analyses, given 
that the two ATLs may act as a coupled bilateral system to support 
semantic memory53. However, this does not preclude the possibility 
of hemisphere preference in the representation of memorability for 
certain verbal content. Future research with a larger sample that has 
bilateral ATL coverage will be more suitable to address this issue.

In conclusion, our data combine converging evidence from 
laboratory, online crowd-sourced, computational modelling and 
iEEG methods to provide a mechanistic explanation of how stim-
ulus memorability affects associative memory retrieval. We find 
that memorability of associative verbal content is grounded in the 
semantic similarity structure of words, and that memorable words 
can modulate the retrieval process in the ATL. By revealing how 
our internal experiences are profoundly shaped by intrinsic prop-
erties of stimuli from the external world, our results shed light on 
how rich relational information in everyday life can be efficiently 
remembered in the human brain.

Methods
Participants. Thirty participants (ten females; 32.73 ± 1.93 years old (mean ± s.e.m.); 
Wechsler intelligence quotient: 87.65 ± 2.06; all >70; see Supplementary Table 1) 
with drug-resistant epilepsy underwent a surgical procedure at the Clinical Center 
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of the National Institutes of Health (NIH). In this procedure, platinum recording 
contacts were implanted subdurally on the cortical surface and within the brain 
parenchyma to localize epileptogenic brain regions. In all cases, the clinical team 
determined the placement of the contacts to best localize epileptogenic regions. 
All participants completed the English version of a paired associates verbal 
memory task. Some of the data from this sample (<30% overlap samples) have 
been published in previous studies examining other memory-related phenomena54. 
We used the behavioural data from all 30 participants for the group-level analysis 
of memorability estimates. Inclusion criteria for the analysis of neural data were 
more restrictive: (1) each participant should have a structural magnetic resonance 
imaging scan to allow proper electrode localization55; (2) each participant should 
have at least three electrode contacts in the brain regions of interest (ATL and 
PTL) after removal of noisy electrodes (see pre-processing steps below); (3) 
each participant should complete more than ten correct trials33 of the paired 
associates memory task across experimental sessions to ensure reasonable signal 
stability for the neural reinstatement analysis (see Extended Data Fig. 3); and 
(4) each participant should have no previous resection of brain regions. In the 
end, data from 19 participants met these criteria for ATL analyses, among which 
18 participants met the criteria for PTL analyses (highlighted by an asterisk in 
Supplementary Table 1). The Institutional Review Board at the NIH approved the 
current study. All participants and/or their guardians provided informed consent 
before data collection. Except where otherwise noted, all computational analyses 
were performed using custom-written MATLAB codes (MathWorks).

For the online replication study, we recruited 3,620 participants (2,074 female; 
35.68 ± 0.25 years old) from the online crowd-sourcing experimental platform 
Amazon Mechanical Turk, following guidelines set by the NIH Office of Human 
Subjects Research Protections. Only participants who indicated English as 
their native language and who provided responses on at least three trials were 
included in the analyses, resulting in a final sample size of 2,623 (1,556 females; 
36.27 ± 0.30 years old) for further analysis. All participants were compensated for 
their time. Note that no statistical methods were used to pre-determine sample 
sizes. That said, our sample size for the iEEG study was larger than previous iEEG 
studies using the same behavioural task32,49,54 and our sample size for the online 
study was similar to previous online cloud-source studies on memorability4,14.

Paired associates verbal memory task. iEEG participants. Each participant 
performed the paired associates verbal memory task using stimuli randomly 
chosen from a pool of 300 common nouns23,24. This task was divided into a set 
of lists, which included a study phase and a test phase each. During the study 
phase of a list, participants sequentially saw six word pairs and were instructed to 
remember the arbitrary associations between them. On each trial of the encoding 
period, each word pair was preceded by a short fixation period (250–300 ms) with 
a cross on the screen, followed by a blank inter-stimulus interval (ISI) of between 
500 and 750 ms. Word pairs were presented stacked in the centre of the screen 
for 4,000 ms followed by a blank ISI of 1,000 ms. To interrupt participants’ active 
maintenance of the word pairs before the test phase, participants were probed to 
complete an arithmetic distractor task of the form ‘A + B + C = ?’ for about 20 s 
after the study phase. In the subsequent test phase, participants were cued with 
one word from each pair selected in a random order. They were instructed to say 
aloud the associated word, with their responses recorded by a microphone. Each 
cue word was presented for 4,000 ms followed by a blank ISI of 1,000 ms, making a 
total of 5,000 ms as the maximum recall time window. Participants could vocalize 
their response any time during the recall period after cue presentation. They were 
instructed to vocalize ‘pass’ if they could not retrieve the target word. After the 
study, trained research assistants manually designated each recorded response 
as correct, intrusion or pass. A response would be designated as ‘pass’ when no 
vocalization was made or when the participant vocalized the word ‘pass’. We also 
recorded participants’ response times as the time lapsed before they made the first 
vocalization following the probe onset. A single experimental session contained 
60–150 total word pairs, or trials (that is, ten to 25 lists), depending on how many 
trials a participant was able to complete in a single recording session (no more than 
1 h per session). We included at most two unique sessions from each participant, 
to minimize potential practice effects or the influence of over-familiarization of 
task content on memorability estimates as the number of tested sessions increased. 
Due to the large number of permuted combinations of word pairs, the likelihood 
that a cue–target pairing was exactly the same across at least two trials within a 
participant, or the same across at least two participants, was very small. In the 
scenario when there was within-subject repetition, we averaged the participant’s 
performance in repeated trials for the target word. This only happened in less than 
1% of all trials in the current study.

Online participants. We conducted a replication of the verbal paired associates 
memory task online on the Amazon Mechanical Turk experimental platform with 
a large sample of participants in order to examine whether memorability estimates 
are consistent across different populations and experimental settings. Amazon 
Mechanical Turk has been shown to be a reliable method for collecting large-scale 
psychological data, usually with broader demographic reach and comparable effect 
size relative to in-laboratory samples56. The methods for the current experiment 
were nearly identical to the in-laboratory paired associates memory task described 

above. Participants studied a list of six word pairs, performed an arithmetic 
distractor task and then underwent a test phase. The timing was identical to the 
experiment for the iEEG participants, although the arithmetic distractor task 
differed slightly in that it asked for the summation of sets of two numbers and 
lasted 16 s. For the test phase, participants saw a cue word and were given as 
much time as needed to type in the associated target word, to accommodate for 
individual differences in typing speed. For words they could not recall, participants 
were instructed to write ‘pass’ in order to proceed to subsequent trials. Each 
participant was tested on three study-and-test lists, resulting in an experiment 
time of approximately 5 min. Before beginning the actual study, they underwent 
training using example word pairs that were not used in the main experiment. All 
word pairs were randomly sampled from the list of word pairs tested with the iEEG 
participants, so that there were 200 responses per target word, with approximately 
ten different possible matching cue words.

Intracranial EEG recordings and pre-processing. We recorded iEEG signals 
from subdural electrodes (PMT Corporation) sampled at 1,000 Hz using a Nihon 
Kohden or Blackrock Microsystems EEG data acquisition system. These subdural 
contacts were arranged in both grid and strip configurations with an inter-contact 
spacing of 5 or 10 mm. The raw EEG traces were initially referenced to a common 
subcutaneous contact or to the system reference. Localization of electrode 
contacts was achieved by co-registering postoperative computed tomography and 
preoperative magnetic resonance images using established methods55. We then 
projected the resulting contact locations to the cortical surface of a reconstruction 
of each individual participant’s brain and a normalized cortical surface in the MNI 
(Montreal Neurological Institute) space for visualization.

We analysed data from 880 subdural contacts (range: 10–116; on average, 
46 ± 6 per participant; see Supplementary Table 4) in the brain regions (ATL and 
PTL) applicable to our study (Fig. 4b). We selected electrode contact for inclusion 
in analysis through a combination of cortical parcellation using FreeSurfer labels 
and a customized procedure detailed in a previous study57. Specifically, we first 
identified temporal electrodes using subject-specific FreeSurfer labels generated 
for each electrode location. Next, we identified ATL electrodes based on the 
average surgical cut from participants who had received an anterior temporal 
lobectomy for clinical indications. Hence, the ATL was surgically defined as shown 
in a previous study57. The remaining temporal lobe contacts were then designated 
as PTL electrodes.

For each participant, iEEG data were pre-processed separately for each 
session in two steps. In the first step, we rejected electrodes exhibiting abnormal 
signal amplitude or large line noise58,59. Specifically, we divided each session 
into 1-s epochs, and for each electrode calculated the amplitude and variance of 
the continuous time series over each epoch. Any electrode with a voltage trace 
whose average amplitude or variance across epochs was more than three standard 
deviations away from the mean across all electrodes was flagged for rejection. We 
iteratively repeated this procedure until no electrode was rejected. We then applied 
a local detrending procedure to remove slow fluctuations from the time series of 
each electrode and used a regression-based approach to remove line noise at 60 
and 120 Hz. To approximate a reference-free montage, we subtracted the common 
average reference (calculated using the retained electrodes in each participant 
within each session) from the voltage trace of each electrode.

In the second step, we rejected additional electrodes and trials that exhibited 
excessive signal kurtosis or variance during epochs of individual trials using a 
procedure we adapted from FieldTrip60. For each electrode channel and trial, 
we computed the variance of the voltage trace during two 8,000-ms epochs 
(−2,000–6,000 ms), time-locked separately to the onset of study pair and the 
onset of retrieval cue of the same words, with 1,000-ms buffer data included at 
the beginning and end of an epoch. This resulted in a two-dimensional matrix of 
variance measures (channels by trials for each epoch), from which we identified 
the maximum variance for each trial and the maximum variance for each channel. 
We identified trial outliers by setting a threshold, Q3 + w × (Q3 − Q1), where Q1 and 
Q3 are the mean voltage boundaries of the first and third quartiles, respectively. We 
empirically determined the weight w to be 2.3 (ref. 54). The aim of these two steps 
was to remove iEEG signals contaminated by epileptic activity, physical movement 
of the participant, or external sources of transient electrical perturbations.

We quantified spectral power and phase in each temporal epoch (encoding and 
retrieval windows) by convolving the pre-processed iEEG signals with complex 
valued Morlet wavelets (wavelet number 6)54. Specifically, we calculated spectral 
power using 30 logarithmically spaced wavelets between 3 and 150 Hz. We then 
squared and log-transformed the continuous time wavelet transform to generate a 
continuous measure of instantaneous power. Next, we z-scored the power values 
separately for each frequency and for each session using the mean and standard 
deviation of all respective values between −700 and −500 ms before probe onset from 
that session61. Finally, we removed the 1,000 ms of buffered data at the beginning and 
end of each epoch and extracted z-scored power traces for each frequency and each 
electrode during task-related periods for later analyses (see ‘Data analysis’).

Modelling memorability of associative concepts based on word similarity.  
We simulated memory retrieval for associative memory based on principles that 
are in line with the Search for Associative Memory model16 and the Adaptive 
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Control of Thought—Rational model20. These models posit that memory recall 
is achieved by searching associative memory content. Hence, the search process 
is contingent on the extent to which the search target is similar to the search cue. 
This can be quantified as the similarity, or matching strength, between a cue and 
its target. In the current cued-recall paired associates verbal memory task, each 
target item Ii (i = 1 to N) in the memory search space may be probed, with equal 
probability, by a set of independent cue items, Qj (j = 1 to M). Hence, the likelihood 
of retrieving Ii given a cue Qj is related to the matching strength between them, 
S(Ii, Qj). We defined the relative matching strength between Ii and Qj by comparing 
their matching strength with the sum of all matching strengths between the same 
cue Qj and all possible target items in the memory search space16—namely, all of 
possible words in the current word pool, k ∈ 1 to N:

P IijQj
� 

¼ S Qj; Ii
� βj

PN
k S Qj; Ik

� βj ð1Þ

where βj represents the saliency (or attention weight) of a given cue. We set β as 1 
for all cues, similar to an early memory search model16. We calculated the matching 
strength for retrieving target Ii using cue Qj, S(Ii, Qj), as the cosine similarity of the 
feature vectors that represent the target and cue items:

SðIi;QjÞ ¼
Ii*Qj

jjIijj jjQjjj
ð2Þ

where we defined a feature vector to represent each word in the word pool  
using the GloVe for word representations, trained on Wikipedia 2014 and 
Gigaword 5 (ref. 29).

As the selection of retrieval cues for each memory target was random within 
session and across participants, the probability of retrieving Ii across different 
retrieval cues can be deemed as independent from one another. Hence, an item’s 
simulated memorability can be approximated as the weighted sum of that item’s 
relative matching strength to all cues:

Mem Iið Þ 
XM

j
P IijQj
� 

P Qj
� 

ð3Þ

We calculated the simulated memorability of each word as a retrieval target 
using the actual cue words in the current study. Because word pairs were randomly 
assigned in each experimental session using the same word pool, each retrieval 
target word did not necessarily have the same cue across participants. Hence, 
for each retrieval target word, the number of actual cue words used to estimate 
memorability varied from 7–24 (average: 18 cue words for each target). We also 
calculated the hypothetical memorability of each word as a retrieval target in the 
chosen pool, probed by all other possible cue word (M = 299 based on the current 
word pool). These two estimates were highly correlated (ρ = 0.68 (0.61 to 0.73); 
P < 0.0001; two tailed), suggesting that the identities of randomly chosen cue words 
may not play a critical role in the memorability estimates of target words. Hence, 
the overall matching strength structure among words can be approximated using 
arbitrary cues from the word pool.

Data analysis. Consistency analysis for observed memorability of associative verbal 
content across participants. We calculated the memorability of each target item 
as the probability of successful retrieval across participants for each word when 
it was used as a target item in the task. To evaluate the reliability of this measure, 
we conducted a split-half consistency analysis. First, we split data into random 
halves that included non-overlapping participants. We then separately calculated 
the memorability of each target word in each random half. Finally, we calculated 
the rank-order Spearman correlation of memorability across words between the 
two different halves, and applied a Spearman–Brown correction to obtain the 
split-half correlation coefficient25,26. We repeated this procedure 5,000 times and 
used the mean correlation coefficient of these iterations as the representative 
split-half consistency measure. Before aggregating these bounded correlation 
coefficients across different iterations, we standardized the rank-order correlation 
coefficients using Fisher’s Z-transform function36. In principle, this split-half 
consistency measure across iterations should be a positive value on average27. To 
generate a surrogate distribution for significance testing, for each iteration, we 
calculated an additional rank-order correlation coefficient after randomly shuffling 
the word memorability ranks from one of the split halves. We then compared 
the representative split-half consistency measure (namely, the mean) against this 
surrogate distribution to obtain a one-tailed P value that reflects the probability of 
obtaining an average split-half correlation coefficient from the observed data that is 
greater than the null value if the null hypothesis is true (that is, zero correlation in 
the shuffled data).

Metrics of neural reinstatement. We quantified the extent to which patterns of 
neural activity were reinstated between encoding and successful memory retrieval 
using methods established in previous studies32,33,49. Briefly, we binned the 
continuous-time z-scored power in each frequency into 200-ms epochs spaced 
every 20 ms (90% overlap) and averaged the instantaneous power over each epoch. 
For each temporal epoch, we averaged the z-scored power across five frequency 

bands: theta (4–8 Hz), alpha (8–16 Hz), beta (16–32 Hz), gamma (32–70 Hz) and 
high-frequency broad band (70–150 Hz). For every encoding (Ei) and retrieval (Rj) 
temporal epoch in each trial, we then constructed feature vectors using the average 
z-scored power values from the five frequency bands for every electrode within a 
chosen brain region:

Ei ¼ z1;1 ið Þ¼ z1;F ið Þ¼ zK;F ið Þ
� �

Rj ¼ z1;1 jð Þ¼ z1;F jð Þ¼ zK;F jð Þ
� �

Where zk,f(i) is the z-scored power of electrode k = 1 to K at frequency band 
f = 1 to F in temporal epoch i. Hence, each temporal epoch contained K × F 
features, which represent the distributed spectral power across all electrodes and 
across five frequency bands at a single moment in time. The reinstatement for a 
given study-and-test trial, Cn, for each encoding epoch i and retrieval epoch j can 
thus be quantified as the cosine similarity between Ei and Rj:

Cnði; jÞ ¼
Ei*Rj

jjEijj jjRjjj

Computing reinstatement for every combination of encoding and retrieval 
epoch generates a reinstatement map for each trial. We then computed the average 
reinstatement map in each participant separately for all correct and incorrect 
trials. We further compared these reinstatement maps across participants at 
each encoding and retrieval time point to identify temporal regions exhibiting a 
significant difference in neural reinstatement between correct and incorrect trials 
(see ‘Statistical analyses’).

Neural reinstatement profile for memorable versus forgettable retrieval targets. To 
account for unbalanced counts of correct trials for memorable and forgettable 
target words, for each participant, we resampled the data with replacement over 
5,000 iterations from each trial category (memorable and forgettable targets) 
based on the same trial count that came from the category with a lesser trial 
count. We then took the average neural reinstatement profile across these 5,000 
iterations as the representative neural reinstatement of a given participant for a 
certain trial type. To obtain group-level measures of fractional area latency, we 
resampled the participants’ data, with replacement, over 5,000 iterations. For each 
iteration, we calculated the percentage of area under the neural reinstatement 
waveform across different response time points based on participants’ average 
response time within that iteration. Because participants had different response 
times, we normalized the data as the percentage of average response time along 
the temporal dimension before aggregating the data across participants. We then 
quantified the time it took for the average neural reinstatement profile to reach 
50% of its area under the waveform from the cue onset until the average response 
time as the 50% fractional area latency. Complementary to this bootstrapping 
approach, to measure peak latency for the neural reinstatement profile (Fig. 5), 
we used a leave-one-out jack-knife approach with proper statistical correction 
recommended by previous studies35,62.

Statistical analyses. Data collection and analysis were not performed blind to the 
conditions of the experiments. For both behavioural and neural data, we primarily 
used non-parametric resampling tests to obtain random-effect P values for effect 
size measures (for example, correlation or mean difference) that were generalizable 
across participants. In brief, we resampled participants’ data with replacement for 
5,000 iterations to obtain a sampling distribution of the estimated effect size for 
a certain measure along with its 95% CI and P values. This procedure minimized 
the assumptions imposed on statistical tests. In general, the P values reported here 
are two tailed. When appropriate, we used a one-tailed P value to test directional 
significance (for example, for split-half consistency analysis27, post hoc tests 
and contrast analysis36), and complemented non-parametric test results with 
parametric test results (for example, t-tests). In these parametric tests, the data 
distribution was assumed to be normal, but this was not formally tested. Based on 
these parametric test results, we also reported a common scale effect size estimate, 
requivalent and its 95% CI36,63,64.

To identify temporal regions exhibiting a significant difference in reinstatement 
between correct and incorrect trials (Fig. 4), we used a combination of a 
permutation test and cluster-wise correction procedure. Specifically, for each pair 
of epochs in the reinstatement analysis, we computed the t-statistic and P value 
across participants between correct and incorrect trials54. We then randomly 
permuted the participant-specific averages (correct versus incorrect) 5,000 times, 
to generate the empirical distribution for every epoch. We calculated t-statistics for 
each of the permuted epochs. To correct for multiple comparisons, we identified 
clusters containing epochs that were adjacent in time that exhibited a significant 
difference between trial types (in each epoch, P < 0.01). For each cluster of 
significant epochs identified in the true and permuted cases, we defined a cluster 
statistic as the sum of the t-statistics within that temporal cluster. We retained 
the maximum cluster statistic during each of the 5,000 permutations to create a 
distribution of maximum cluster statistics. We assigned P values to each identified 
cluster of the true data by comparing its cluster statistic with the distribution of 
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maximum cluster statistics from the permuted cases. Clusters were determined  
to be significant if the P value calculated at the cluster level was <0.05.

To evaluate specific spatial and temporal patterns of neural reinstatement 
profiles in relation to trial-by-trial memorability scores, we performed a focal 
contrast analysis36,37. In this analysis, we predicted that the correlation magnitude 
between memorability scores and neural reinstatement values in the early 
retrieval time window of the ATL should be higher than that in all of the other 
conditions (namely, the late retrieval time window of the ATL and both the 
early and late retrieval time windows of the PTL). We thus assigned the contrast 
weights (+3, −1, −1 and −1, respectively) to these four conditions. This set of 
contrast weights should sum to be 0, reflecting a theoretical null result. However, 
if the data follow our prediction, the weighted sum of observed data should on 
average yield a positive value across participants, and therefore can be tested using 
a one-tailed test using either a non-parametric bootstrap analysis or a parametric 
one-sample t-test36,37. This focal contrast analysis would thus allow us to draw 
a stronger inference on the particular spatial–temporal neural reinstatement 
pattern predicted by our hypothesis.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Processed data used in this study can be found at https://neuroscience.nih.gov/
ninds/zaghloul/downloads.html.

Code availability
Custom code that supports the findings of this study is available from W.X.  
upon request.
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Extended Data Fig. 1 | Memorable words are retrieved more quickly but lead to more intrusion errors across individuals.  a, Participants’ values for 
Spearman correlation (Fisher’s z transformed) of the relationship between target word memorability estimates and the response times of retrieved 
words and b, average memorability of intruded words across participants in the iEEG sample. Each dot indicates a value from a single participant, with 
the whiskers indicating the within-participant standard error across trials. The dot sizes are weighted by the overall within-participant standard error, 
with a larger size indicating smaller variability. The data are sorted by participant-specific estimates separately for (a) and (b). The random-effect mean 
estimates (in red) and their standard errors (in green) between participants are plotted at the bottom, which are identical to the bars shown in Fig. 3. 
Although there is a noisy estimate in (a) due to a low trial count (11 trials), inclusion or exclusion of this participant’s data does not substantially impact 
the mean estimate and significant testing across participants.
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Extended Data Fig. 2 | Correlation estimates (Fisher’s z transformed) for the association between trial-by-trial memorability of correctly retrieved 
items and neural reinstatement in the ATL and PTL. a, Data across participants in the ALT during the early retrieval time window. b, Data across 
participants in the ALT during the late retrieval time window. c, Data across participants in the PLT during the early retrieval time window. d, Data 
across participants in the PLT during the late retrieval time window. Each dot indicates a value from a single participant, with the whiskers indicating the 
within-participant standard error across trials. The dot sizes are weighted by the overall within-participant standard error, with a larger size indicating 
smaller variability. All data are sorted by participant-specific correlation estimates based on (a). The random-effect mean estimates (in red) and their 
standard errors (in green) across participants are marked at the bottom of each plot, which are identical to the bars shown in Fig. 6c.
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Extended Data Fig. 3 | ATL neural reinstatement effect stabilizes over around 10 trials. a, Resampling without replacement of the current dataset over 
100 interactions with 2 trials per condition (that is, 2 for correct and 2 for incorrect retrieval) per subject, b, 4 trials per condition per subject, c, 10 trials 
per condition per subject (10 trials), d, and all available trials for included subjects. Intuitively, the more trials were included, the less noisy the data were. 
When the number of resampling trials reached to 10, the amount of variance in the estimate of mean neural reinstatement pattern for correct responses 
was similar to the data from all available trials from all included participants. This resampling analysis provides some analytical support for the trial count 
criterion we have imposed on the analysis.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection iEEG data were acquired using Nihon Khoden's or Blackrock's EEG data acquisition software. Behavioral data for iEEG participants were 
collected by using Python codes. The online study was done using JAVA scripts through Amazon Mechanical Turk platform. 

Data analysis Electrode localization was fulfilled by using AFNI and FreeSurfer software packages. All visualization and statistical analyses were 
performed using custom code in Matlab (Mathworks, Inc.). Custom code is available from the first author upon request. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The data that support the findings of this study are available from the corresponding authors upon request and are also available for public download at https:// 
neuroscience.nih.gov/ninds/zaghloul/downloads.html.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Thirty participants (10 females; 32.73 ± 1.93 [mean ± s.e.m.] years old; Wechsler Intelligence Quotient [IQ]: 87.65 ± 2.06 , all > 70; see  
Supplementary Table 1) with drug resistant epilepsy underwent a surgical procedure at the Clinical Center of the National Institutes of Health 
(NIH, Bethesda, Maryland, USA), and participated this study. We used the behavioral data from all 30 participants for the group-level analysis 
of memorability estimates.   
 
For the online replication study, we recruited 3620 participants (2074 female; 35.68 ± 0.25 years old) from the online crowd-sourcing 
experimental platform Amazon Mechanical Turk, following guidelines set by the NIH Office of Human Subjects Research Protections. 

Data exclusions We used the behavioural data from all 30 participants for the group-level analysis of memorability estimates. Inclusion criteria for the analysis 
of neural data were more restrictive: 1) each participant should have a structural MRI (Magnetic Resonance Imaging) scan to allow proper 
electrode localization, 2) each participant should have at least 3 electrode contacts in the brain regions of interest (anterior and posterior 
temporal lobes; ATL and PTL) after removal of noisy electrodes (see Pre-processing steps below); 3) each participant should complete more 
than 10 correct trials of the paired associates memory task across experimental sessions to ensure reasonable signal stability for the neural 
reinstatement analysis (see Extended Data Fig. 3); and 4) each participant should have no prior resection of brain regions. In the end, data 
from 19 participants met these criteria for ATL analyses, among which 18 participants met the criteria for PTL analyses (highlighted by an 
asterisk in Supplementary Table 1).  
 
For the online replication study, only participants who indicated English as their native language and who provided responses on at least three 
trials were included in the analyses, resulting in a final sample size of 2623 (1556 female; 36.27 ± 0.30 years old) for further analysis.

Replication We replicate the behavioral findings from the iEEG sample through an online cohort with 2623 participants. We found that the memorability 
phenomenon estimated from 30 iEEG sample was comparable to that from 2623 online subjects. 

Randomization Randomization of participants was not relevant to this study and participants were therefore not allocated into separate groups.  
Every participant completed an experimental session with task stimuli randomly chosen from a word pool of 300 words. And all experimental 
factors, such as study order and test order, were fully randomized within list. 

Blinding Blinding was not relevant to this study. Data collection and analysis were not performed blind to the conditions of the experiments. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics The demongraphic informaiton of the iEEG participants is summarized in Supplementary Table 1. In brief, these thirty 
participants (10 females) were on average 32.73 ± 1.93 [mean ± s.e.m.] years old with Wechsler Intelligence Quotient [IQ]: 87.65 
± 2.06 (all > 70).  
 
The demographic information for the 2623 online participants in the final analysis: 1556 female; 36.27 ± 0.30 years old. 
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Recruitment iEEG participants were recruited through the clinical trial protocol https://clinicaltrials.gov/ct2/show/NCT01273129. Online 
participants were recruited through Amazon Mechanical Turk platform. All subjects participated this study voluntarily. 

Ethics oversight The Institutional Review Board at the NIH approved the current study. All study procedures follow guidelines set by the NIH 
Office of Human Subjects Research Protections. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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