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Abstract 59 

INTRODUCTION: Impaired long-term memory is a defining feature of Mild Cognitive Impairment 60 

(MCI). We tested whether this impairment is item-specific, limited to some memoranda 61 

whereas some remain consistently memorable. 62 

METHODS: We conducted item-based analyses of long-term visual recognition memory. 394 63 

participants (healthy controls (HC), Subjective Cognitive Decline (SCD), and MCI) in the 64 

multicentric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) were 65 

tested with images from a pool of 835 photographs. 66 

RESULTS: We observed consistent memorability for images in HCs, SCDs, and MCI, predictable 67 

by a neural network trained on another healthy sample. Looking at memorability differences 68 

between groups, we identified images that could successfully categorize group membership 69 

with higher success and a substantial image reduction than the original image set.  70 

DISCUSSION: Individuals with SCD and MCI show consistent memorability for specific items, 71 

while other items show significant diagnosticity. Certain stimulus features could optimize 72 

diagnostic assessment, while others could support memory. 73 

 74 

Keywords: Alzheimer’s disease (AD), subjective cognitive decline (SCD), mild cognitive 75 

impairment (MCI), memorability, diagnostic assessment, image analysis 76 

 77 

 78 
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1. Background 79 

Recent work in healthy individuals has found that certain images are intrinsically 80 

memorable or forgettable across observers [1,2]; there are images of faces or scenes that most 81 

people remember or forget, regardless of their different individual experiences. This 82 

memorability of an image can be quantified and predicts 50% of the variance in people’s 83 

performance on a memory test [2]. It is intrinsic to the image itself, stable across different 84 

image contexts [3], tasks [4,5], and timing [6,7]. Viewing memorable images automatically 85 

elicits specific neural signatures [8,9], and the memorability score of an image can be predicted 86 

by computational models [10,11]. However, image attributes such as aesthetics, emotionality, 87 

typicality, or what people believe will be memorable do not fully predict memorability [2,12], 88 

and memorability is an automatically processed image property that is resilient to the effects of 89 

attention [4]. This means that researchers can predict in advance what images a person is likely 90 

to remember or forget, and use such information to create memorable educational materials, 91 

or design well-balanced memory tests.  92 

While memorability has so far been characterized based on healthy participants’ 93 

memory behavior, it is unclear if memorability is also consistent in populations with memory 94 

impairments at increased risk for Alzheimer’s Disease (AD), such as Mild Cognitive Impairment 95 

(MCI) or Subjective Cognitive Decline (SCD) [13]. Consistent memorability in SCD and MCI would 96 

enable better prediction of what images are likely to be remembered or forgotten. 97 

Furthermore, changes in memorability patterns across disease stages could improve cognitive 98 

staging and design of cognitive progression markers. By avoiding highly memorable images, 99 

cognitive tests could be made more time efficient and more sensitive. Understanding which 100 
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stimulus features improve or impair memorability could provide insights into the cognitive 101 

processes that are impaired. Furthermore, knowledge about memorability could aid in the 102 

design of memorable environments or allow clinicians to focus on aiding memory for 103 

forgettable items.  104 

In the current study, we analyzed the performance of 394 individuals, including those 105 

with SCD, MCI, and healthy controls (HC), on a visual recognition memory test in which each 106 

participant had to memorize a randomly selected subset of 88 photographs from a pool of 835. 107 

This randomization afforded us the possibility to assess memorability unconfounded by 108 

systematic effects of stimulus-selection or stimulus-order effects. First, we find significant 109 

similarities across groups in the images they remember and forget, and similarities to a 110 

convolutional neural network (CNN) trained on memorability, allowing the precise prediction of 111 

memory performance for each group. Second, we find a separate set of images that can reliably 112 

differentiate groups, with meaningful implications for diagnosis. Finally, using a large-scale 113 

online experiment to score the images, we analyze what image features might lead to the 114 

memorability and diagnosticity of different images. 115 

 116 

2. Methods 117 

2.1 Study design 118 

 Visual memory tests were analyzed from the DZNE-Longitudinal Cognitive Impairment 119 

and Dementia Study (DELCODE), an observational, longitudinal memory clinic-based study 120 

across 10 sites in Germany. Specific details about this study, the visual memory task, and data 121 
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handling and quality control are reported in Jessen et al. [14] and Düzel et al. [15]. The data 122 

analyzed in this study were from the second data release from the DELCODE study comprising 123 

of 700 individuals of which 394 participants with complete datasets were analyzed, including 124 

136 participants with SCD, 65 with MCI, and 193 HC. Individuals with SCD and MCI were 125 

recruited through referrals and self-referrals, while HC were recruited through public 126 

advertisements. Group membership was determined using the CERAD neuropsychological 127 

battery [16]. MCI individuals were defined as those with test performance under 1.5 standard 128 

deviations below the age-, sex-, and education-adjusted mean performance. SCD and HC 129 

individuals were defined as those with performance above this cutoff, but SCD individuals 130 

subjectively reported decline in cognitive functioning with concerns. 131 

 The study protocol was approved by all involved centers’ institutional review boards and 132 

ethical committees, and all participants gave written informed consent. DELCODE is 133 

retrospectively registered at the German Clinical Trials Register (DRKS00007966), (04/05/2015). 134 

 135 

2.2 Visual memory test 136 

 Participants performed an fMRI scene image encoding and retrieval task [17]. First, 137 

while in the fMRI scanner, participants studied 88 novel scene target images (44 indoor and 44 138 

outdoor scenes) and 44 repetitions of two pre-familiarized images (one indoor and one 139 

outdoor, 22 times each). All images were 8-bit gray scale, presented on an MR-compatible LCD 140 

screen (Medres Optostim), scaled to 1250 x 750 pixel resolution and matched for luminance, 141 

with a viewing horizontal half-angle of 10.05° across scanners. Each image was presented for 142 
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2500ms (with an optimized jitter for statistical efficiency), and participants categorized them as 143 

“indoor” or “outdoor” with a button press. Outside of the scanner after a 70-minute delay, 144 

participants completed a recognition memory task with these 88 images and 44 novel foil 145 

images (22 indoor and 22 outdoor). Participants indicated their recognition memory with a 5-146 

point scale: 1) I am sure that this picture is new, 2) I think that this picture is new, 3) I cannot 147 

decide if this picture is new or old, 4) I think I saw this picture before, or 5) I am sure that I did 148 

see this picture before. Results from the fMRI study are reported in [17]. 149 

While each participant was tested on 88 target images and 44 foil images, these images 150 

were randomly sampled from a larger set of 835 scene images, allowing us to conduct image-151 

based analyses on a large set of images (see Figure 1 for example images). This randomization 152 

allowed us to avoid confounding effects of image selection and image order on memory 153 

performance. On average, each image served as a target image for 20.3 HC, 14.3 SCD, and 6.8 154 

MCI individuals. 155 

 156 

2.3 Analyzing similarity of MCI, SCD, and healthy individuals: Predicting performance 157 

 We first asked whether there are consistencies in memory performance for MCI and 158 

SCD just as there are for healthy individuals [1]; i.e., whether there are certain images that they 159 

tend to remember or forget, and, if such consistencies exist, to what degree they align with the 160 

images that tend to be remembered and forgotten by HCs. 161 

 To address this question, Spearman’s rank correlations of hit rate (HR) performance on 162 

images in the visual memory task were calculated between the different groups. To assess 163 
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memorability consistency, we conducted a consistency analysis as described in Isola et al. [1], 164 

where participants are split into random halves (across 1000 iterations) and their HRs are 165 

calculated for all images, and Spearman’s rank correlated between the two halves. We also 166 

examined whether a convolutional neural network (CNN) that is significantly able to predict 167 

memory performance in healthy individuals [11] could predict memorability for SCD and MCI 168 

groups. MemNet is a CNN with the architecture and pretraining set of Hybrid-CNN [18], a CNN 169 

able to classify object and scene images, then trained to predict the memorability score of an 170 

image (i.e., the likelihood for that image to be remembered by any given person). The training 171 

of MemNet was originally conducted with a separate set of images in a separate set of healthy 172 

adults recruited online [11], and here we tested it with new images and data across participant 173 

groups from the current study. Specifically, we obtained MemNet scores for each of the 835 174 

stimulus images and used Spearman’s rank correlations to test the degree to which 175 

memorability CNN-predicted memory scores were correlated with participant group memory 176 

scores. 177 

 178 

2.4 Analyzing dissimilarity of MCI, SCD and healthy individuals: Differentiating groups 179 

 An equally important question is whether there is a set of images in which consistencies 180 

in memory performance reliably differ between impaired populations and healthy individuals. If 181 

such images exist, then they could form an optimized test to distinguish memory impaired 182 

individuals from healthy controls with high efficiency. 183 
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 To explore this question, we conducted an analysis we call the Iterative Image Subset 184 

(IIS) Analysis to compare the groups. Here, we describe the analysis comparing MCI to HC, 185 

however the same analysis was also conducted with SCD versus HC. First, the HC participant 186 

pool was randomly downsampled so that the same number of HC were used in the analysis as 187 

MCI individuals. The entire pool of participants was then split into two random halves (Group A 188 

and Group B). HR on the memory task was calculated for each image for the HC (HRGroupA,Healthy) 189 

and for the MCI individuals (HRGroupA,MCI) in Group A. Using this performance metric, we formed 190 

three subsets of images. The number of images used in each subset was selected iteratively for 191 

all possible subset sizes, ranging from 0% to 100% of images (835 images) in 1% increments, to 192 

determine the optimal image subset size. Only images with at least 4 individuals’ data were 193 

included in the analysis. The three resulting subsets were: 194 

1) “H>M”, the top set of images where HC outperformed MCI (i.e., maximizing 195 

HRGroupA,Healthy - HRGroupA,MCI ; note that it is “H>S” for a comparison with SCD) 196 

2) “H<M”, the top set of images where MCI outperformed HC (i.e., maximizing HRGroupA,MCI 197 

- HRGroupA,Healthy) 198 

3) “H=M”, the top set of images where HC performed most similarly to MCI (i.e., 199 

minimizing | HRGroupA,Healthy - HRGroupA,MCI |) 200 

We then assessed the performance of classifying subjects in Group B using each of the three 201 

subsets of images. Specifically, using just the images in a single subset (e.g., H>M), we 202 

determined the HR for each of the individuals in Group B (HRGroupB). We then performed a 203 

Receiver Operating Characteristic (ROC) analysis to determine the diagnostic ability of this 204 

subset of images, applying a range of HR cutoffs from 0 to 1 to classify an individual from Group 205 
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B as either HC or MCI, using HRGroupB. We calculated the accuracy of this test based on group 206 

membership, and contrasted successful MCI diagnosis (sensitivity, or true positive rate) with 207 

misclassification of HC (specificity, or 1 - false positive rate). We assessed classification 208 

performance by Area Under the Curve (AUC), where a score of 1 indicates perfect performance, 209 

while 0.5 indicates chance performance. This complete analysis was conducted across 100 210 

random participant splits into Group A and B. 211 

 212 

2.5 Finding image attributes that distinguish these image sets 213 

 To see what aspects of the images may determine their membership into different 214 

image sets, we conducted an experiment using the online crowd-sourcing platform Amazon 215 

Mechanical Turk (AMT). For each of the 835 images, 12 online participants rated the scene in 216 

the image on five relevant properties identified in previous scene perception and memorability 217 

research [12,19] using a 5-point Likert scale: size (the perceived size of the portrayed scene, not 218 

the image pixel size), clutter, aesthetics, interest, and whether they think they would remember 219 

the image (subjective memorability). They also indicated whether the image showed a natural 220 

or manmade scene and if there was a person present. 450 people anonymously participated in 221 

the study and provided consent, and this study was approved by the National Institutes of 222 

Health (NIH) Office of Human Subjects Research Protections. Two main comparisons were 223 

tested for each attribute, using paired samples t-tests: 1) forgettable versus memorable images 224 

with similar performance between HC and MCI/SCD individuals, 2) diagnostic versus non-225 

diagnostic images, where HC and MCI/SCD individuals differed in their performance. 226 
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Forgettable and memorable images were identified as the top set of images where both HC and 227 

impaired individuals had average performance below or above (respectively) median 228 

performance, and the difference between groups was minimized (i.e., H=M). Diagnostic and 229 

non-diagnostic images were selected from the sets resulting from the IIS analysis (Section 2.4), 230 

e.g., H>M and H<M image sets, respectively. The number of images in each set was taken as the 231 

optimal number of images identified from the IIS analysis. 232 

 We also examined how memorability and diagnosticity relate to more meta-cognitive 233 

attributes: similarity to other images and confidence ratings of the participants. First, it is 234 

possible that the memorability or diagnosticity of an image is related to how similar that image 235 

is to other images in a set (e.g., memorable images are more visually unique). To assess image 236 

similarity, we used an object classification CNN called AlexNet CNN [20]. This classification CNN 237 

is often used as a model for the human visual system, showing similarities to the brain for visual 238 

processing of objects [21] and scenes [22]. This CNN can thus approximate the neural 239 

representations of an image at different levels of extraction (i.e., low-, mid-, and high-level 240 

visual features). For each classification CNN layer, we obtained the outputs for all 835 images 241 

and calculated their average Pearson correlation to all other images. Second, we also analyzed 242 

proportion of high confidence ratings given to each image by participants in the main 243 

experiment, to see if memory confidence is related to image diagnosticity. 244 

 245 

3. Results 246 
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 247 

Figure 1: Example images and group performance. The scatterplot shows the distribution of memory performance 248 

(hit rate) for all 835 images for healthy controls (HC) versus individuals with Mild Cognitive Impairment (MCI). The 249 

diagonal line indicates the points at which performance is equal between both groups. Based on performance, 250 

images can be conceptually sorted into four quadrants: 1) images that are memorable to both HC and MCI 251 

individuals (green), 2) images that are memorable to HC but forgettable to MCI (blue), 3) images that are 252 

forgettable to both groups (yellow), and images that are memorable to MCI but forgettable to HC (red). Example 253 

images and performances at the extreme ends for each quadrant are arranged around the scatterplot. In the work 254 

that follows, we analyze these four groups of images and determine if they can be used meaningfully to predict 255 

memory performance. 256 

 257 

  258 
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3.1 Consistencies in the memories of participant groups 259 

 260 

Figure 2: Consistencies across groups and the memorability neural network. The scatterplots show a comparison 261 

of hit rates for each of the 835 images between all pairings of the experimental groups (Healthy Controls, HC; 262 

Subjective Cognitive Decline, SCD; Mild Cognitive Impairment, MCI), as well as predicted hit rate from the 263 

memorability prediction convolutional neural network (CNN). Spearman’s rank correlation (ρ) is shown for each 264 

plot, and asterisks (*) indicate significant correlations. Scatterplot points are colored by quadrant (as in Figure 1), 265 

and the diagonal line indicates points where both groups show equal performance.  266 

 267 

As expected, participant groups with increasing memory impairment showed decreases 268 

in average memory performance (HC: M=0.68, SD=0.17; SCD: M=0.62, SD=0.18; MCI: M=0.53, 269 
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SD=0.26). However, there were also impressive correlations across groups in the images they 270 

remembered best or worst (Figure 2). HC and SCD had a significant Spearman’s rank correlation 271 

of ρ=0.50 (p=1.03 × 10-54), while HC and MCI had a significant correlation of ρ=0.28 (p=1.34 × 272 

10-16), and SCD and MCI had a significant correlation of ρ=0.31 (p=2.12 × 10-19). HC performance 273 

was significantly more similar to SCD performance than MCI performance (Z=6.13, p~0), and 274 

SCD performance was significantly more similar to HC performance than MCI performance 275 

(Z=5.42, p~0). These results indicate that all participant groups tended to remember the same 276 

images as each other. All groups were also internally consistent (HC: ρ=0.42; SCD: ρ=0.32; MCI: 277 

ρ=0.22; all p < 0.0001), meaning a memory impaired individual will still tend to remember 278 

similar images to someone else with the same diagnosis. 279 

The MemNet CNN trained to predict image memorability showed significant 280 

correlations with HC (ρ=0.24, p=3.29 × 10-12) and SCD behavior (ρ=0.23, p=1.84 × 10-11), while 281 

MCI behavior correlations did not pass significance thresholds (ρ=0.06, p=0.080).   282 

 283 

  284 
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3.2 Differentiating memory impaired groups from healthy controls 285 

 286 

Figure 3: Finding the optimal number of images to diagnose MCI. A) This scatterplot of image performance shows 287 

an example of the three possible subsets the images can be divided into: H<M (red), H=M (yellow), and H>M 288 

(blue). B) Area Under the Curve (AUC) by image set and number of images in the set. Testing each of these subset 289 

types at different set sizes, we find that the H>M set (blue line) consistently outperforms the other image subsets 290 

at all set sizes. Importantly, the H>M set also outperforms the all-image set (gray dotted line) at a surprisingly small 291 

number of images, first overtaking the all-image set at only 192 images versus the 835 images used in the all-image 292 

set. From this set of 192 images, each participant saw on average only 18.3 images. C & D) Receiver Operating 293 

Characteristic (ROC) curves for two peaks – the first peak where H>M overtakes the all-image set, and the max 294 

peak where H>M has the largest difference from the all-image set. E & F) Participant classification performance, 295 

averaged across 100 iterations of participant split-halves, at a sample cutoff (determined as the point where the 296 

sensitivity + specificity is at its maximum), broken down by participant type for the different image sets. Error bars 297 

indicate standard error of the mean across the 100 iterations. Note that the optimized H>M image subset 298 

particularly shows a boost in MCI diagnosis sensitivity over all other image sets. 299 
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 300 

 As a first test, we examined the ability to differentiate HC and MCI individuals. The IIS 301 

analysis shows that the H>M image subset consistently outperforms the H=M and H<M image 302 

subsets at all subset sizes, in diagnosing individuals as MCI versus HC (Figure 3). This means that 303 

images that are highly memorable to healthy controls but highly forgettable to MCI individuals 304 

are best able to distinguish these two groups. Surprisingly, H>M image subsets as small as 23% 305 

of the original image set were able to surpass the original image set in diagnostic ability. With 306 

only 192 total images (or 18.3 images seen per participant), the diagnosis AUC was 0.77, while 307 

using the full set of 835 images resulted in an AUC of 0.76. At this 192-image subset size, the 308 

difference between subsets is also clear: the H=M set only reaches an AUC of 0.70, while the 309 

H<M set performs worse with an AUC of 0.65.  310 

Differentiating HC from SCD individuals shows similar results, even though the two 311 

groups have more similar memory performance. The AUC of the H>S set is higher than those of 312 

H=S and H<S at all image subset sizes, and the H>S subset first overtakes performance of the 313 

full image set at only 92 images in the subset. The AUC for the full image set is 0.59, while with 314 

the 92-image subset, the AUC of H>S is also 0.59. In regard to the other image subsets, the AUC 315 

for H=S is 0.57, and for H<S it is 0.55. H>S reaches a maximum of performance at a subset size 316 

of 367 images, with an AUC of 0.61. 317 

We also determined if the image subsets generalized across groups. We performed the 318 

IIS analysis by training on MCI data to determine the image subsets, but then testing those 319 

images with SCD data. We find these subsets generalize to each other: the H>M image subset 320 
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shows higher performance than the other image subsets (H=M, H<M), and first overtakes 321 

performance of all images (AUC=0.60) at a subset size of only 100 images (H>M: AUC=0.60; 322 

H=M: AUC=0.50; H<M: AUC=0.55). The H>M image subset reaches its peak in performance at 323 

417 images, at an AUC of 0.63.  324 

  These results show that using a small, honed subset of images results in higher 325 

diagnostic performance than a large, exhaustive set of images, for both SCD and MCI 326 

populations. Additionally, using a poor set of images (e.g., H<M) could result in a high diagnosis 327 

failure rate. We also find that diagnostic images can successfully transfer across groups; using 328 

images that identify MCI can also successfully identify SCD. Since all of the above tests use 329 

separate halves of the participants to determine the diagnostic images and to predict group 330 

membership, this image diagnosticity is likely to translate to other participant samples as well 331 

as other experimental contexts. 332 

 333 

  334 
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3.3 Image attributes that distinguish these image sets  335 

 336 

Figure 4: Average attribute ratings based on image set. (Left) Comparison of average attribute ratings between 337 

images that are forgettable versus memorable to both HC and individuals with MCI or SCD. (Right) Comparison of 338 

average attribute ratings between images from the poorly diagnostic image set (H<M) versus highly diagnostic set 339 

(H>M). (Both) All attributes are rated on a Likert scale of 1 (low) to 5 (high). “Remember” is a rating of how likely 340 

participants believed they’d be able to remember the image. Asterisks indicate significant differences in a paired 341 

samples t-test (p < 0.05). Error bars indicate standard error of the mean. 342 

 343 

Finally, we investigated image attributes related to why an image is memorable to both 344 

groups, or why it is diagnostic (Figure 4). Focusing on images that have highly correlated 345 

performance between memory impaired individuals and healthy controls, memorable scene 346 

images tended to contain more clutter (t(191)=2.84, p=0.005), appeared more interesting 347 

(t(191)=3.30, p=0.001), and were subjectively more memorable to healthy controls 348 

(t(191)=3.59, p=4.17 × 10-4). However, they were not different in scene spatial size (p=0.567) or 349 

aesthetics (p=0.752). In terms of content, memorable versus forgettable images tended to be 350 

manmade rather than natural (forgettable: 76.6% manmade, memorable: 87.0%; Z(191)=2.64, 351 

p=0.008), but were equally likely to be indoors (forgettable: 52.1% indoors; memorable: 50.5%; 352 



 19 

p=0.76) and contain people (forgettable: 7.8% contained people; memorable: 13.0%; p=0.09). 353 

Finally, memorable images showed no significant differences in across-image similarity based 354 

on responses across layers of a CNN trained on image classification, suggesting that memorable 355 

images are not more visually distinctive than forgettable images (Supplementary Table 1). 356 

Focusing on images that show large differences between healthy controls and memory-357 

impaired individuals, successfully diagnostic images versus non-diagnostic images tended to be 358 

of smaller spaces (t(191)=3.05, p=0.003), were less interesting (t(191)=2.81, p=0.005), less 359 

aesthetic (t(191)=4.04, p=7.70 × 10-5), and were judged to seem more forgettable by healthy 360 

controls (t(191)=3.79, p=2.05 × 10-4), but showed no difference in clutter (p=0.153). In terms of 361 

content, diagnostic images tended to be manmade (non-diagnostic: 72.4%; diagnostic: 83.9%; 362 

Z(191)=2.72, p=0.007), indoors (non-diagnostic: 37.5%; diagnostic: 55.7%; Z(191)=3.58, p=3.40 × 363 

10-4), and contained people (non-diagnostic: 5.2%; diagnostic: 17.7%; Z(191)=3.85, p=1.20 × 10-364 

4). Memorable images were significantly more interesting (t(191)=2.80, p=0.006) and seemed 365 

subjectively more memorable (t(191)=3.55, p=4.86 × 10-4) than diagnostic images. This shows 366 

that diagnostic images that SCD and MCI individuals forget but healthy controls remember tend 367 

to be those that are generally less aesthetic or interesting, yet are manmade, indoor scenes 368 

containing people. There were no significant differences in across-image similarity between 369 

diagnostic and non-diagnostic images as determined by the image classification CNN 370 

(Supplementary Table 1), suggesting that diagnostic images are not more visually distinctive. 371 

Additionally, a 2-way ANOVA (participant group × image diagnosticity) comparing proportion of 372 

high-confidence ratings found a main effect of participant group (F=11.53, p=1.12 × 10-5), but 373 



 20 

no significant effect of image diagnosticity (p=0.626), nor a significant interaction (p=0.350), 374 

suggesting no link between confidence and diagnosticity. 375 

 376 

4. Discussion 377 

While individuals with SCD and MCI have decreased memory performance in 378 

comparison to HC, there is a considerable overlap in the images that they remember and 379 

forget. Thus, there are images that are highly memorable and forgettable to everyone 380 

regardless of diagnosis. These consistencies in memorability exist not only between impaired 381 

memory groups and healthy controls, where consistencies in memorability are already well-382 

established for controls [1,2], but also within the SCD and MCI groups themselves. Our 383 

questionnaire-based assessment of image attributes revealed that this common memorability is 384 

not related to aesthetics or spaciousness, but to being manmade scenes that contain more 385 

objects, and are subjectively more memorable and interesting. While previous work has 386 

reported that ratings of interestingness, subjective memorability, and aesthetics are ultimately 387 

not predictive of scene memorability at a fine-grained scale for healthy populations [7], such 388 

attributes may be important for guiding the selection of images that are broadly memorable 389 

across population types. We also find that memorable images are not necessarily the most 390 

visually distinctive, as determined by a CNN trained on image classification. 391 

Additionally, we show that a publicly available convolutional neural network (MemNet 392 

[6]) trained to predict image memorability aligns with performance of HC as well as those with 393 

SCD and marginally with MCI. This raises the possibility that computational methods may guide 394 
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the selection of images for diagnostic or therapeutic tools on the basis of memorability. Such 395 

tools may assist in creating or adapting environments to ease memory burdens on patients by 396 

avoiding low memorability items, or focusing strategies on rehearsing particularly forgettable 397 

information.  398 

 While memorability is generally consistent across HC, SCD, and MCI groups, we have 399 

also identified a specific set of images that significantly differ between groups. Namely, we find 400 

that there are images that are highly memorable to HC, yet highly forgettable to MCI and SCD 401 

individuals, and a certain subset of these images can be used to best determine if an individual 402 

is likely to be healthy or have MCI or SCD. The images generalize across impairments; images 403 

that differentiate MCI also successfully differentiate SCD, indicating that SCD may show similar 404 

cognitive impairments to those developed in MCI. This image set results in as much as a 10% 405 

improvement in diagnostic performance in comparison to a poorly chosen set of images (e.g., 406 

images memorable to MCI but forgettable to healthy controls). Further, this optimized image 407 

set reaches peak diagnostic performance with as few as 18.3 images seen per participant, 408 

classifying as well as the original set with 88 images per participant. This means that individuals 409 

with MCI or SCD can be identified with higher certainty, and in a quicker, easier test. In terms of 410 

content, these diagnostic images tended to be manmade, indoor scenes that contained people. 411 

However, in contrast to memorable images, they tended to be less aesthetic, less interesting, 412 

and seem subjectively less memorable. Scenes containing people tend to be the most 413 

memorable [12], however it is perhaps the combination of memorable image content (e.g., 414 

people, manmade objects) yet lack of memorable qualities (e.g., interestingness, aesthetics) 415 
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that causes these images to be remembered by healthy controls but forgotten by SCD and MCI 416 

individuals.  417 

Functional neuroimaging work with healthy individuals has found that viewing 418 

memorable images results in automatic, stereotyped activity patterns in the visual cortex and 419 

medial temporal lobe [8,9]. In future work, investigating the neural fate of memorable and 420 

forgettable images in older individuals and those with SCD or MCI may aid in understanding 421 

how patients may differentially process images at different processing stages of perception and 422 

memory encoding. In the DELCODE study, we have indeed obtained fMRI data alongside the 423 

behavioral data reported here [15] and will be able to address this question in the future. A 424 

related question is how Alzheimer’s pathology is related to memorability. For instance, we have 425 

previously shown that increasing levels of CSF total-tau are related to decreasing novelty 426 

responses in the amygdala and the hippocampus [15]. These functional consequences of tau-427 

pathology could influence memorability patterns in MCI or SCD. Indeed, activity in medial 428 

temporal lobe regions shows early and automatic sensitivity to the memorability of an image in 429 

healthy individuals [8]. Further, older adults at risk for MCI first show volume decrease in the 430 

entorhinal cortex, resulting in impairments in object location memory [23,24] and object 431 

discrimination [25]. The diagnostic images, with their higher scene complexity and several 432 

manmade objects, may be most affected by early object processing deficits. Image diagnosticity 433 

as calculated in this study could also be related to the biomarker status of individuals, a 434 

possibility that we will be able to address in the future with larger sample sizes. It will also be 435 

paramount to better understand the visual, semantic, and statistical features of an image that 436 

drive it to be forgettable, memorable, or diagnostic. Several studies are working to examine 437 
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memorability with more varied image sets, in a variety of experimental image contexts, and 438 

using new computational methods ([26] for a review). Additionally, understanding the content 439 

that makes an image most sensitive to differences between groups will allow for better 440 

identification of early impairments. Using fine-grained confidence rating scales or an 441 

information-dense metric of recollection (such as drawing [27]) may provide a more nuanced 442 

understanding of the memory for these images. While the current work uses a memorability 443 

CNN trained on healthy participant memory data to predict participant memory, as larger-scale 444 

data from individuals with SCD, MCI, and Alzheimer’s Disease is collected, a CNN could learn to 445 

identify images that would be particularly effective in diagnosis. Finally, while the current study 446 

does not find consistent diagnostic ability in images remembered by impaired individuals and 447 

forgotten by healthy controls, this set of images may be particularly interesting to investigate in 448 

future work. 449 

In sum, we show the importance of images themselves in predicting what memory 450 

impaired individuals are likely to remember and differentiating them from healthy individuals. 451 

Such insights will have a meaningful impact in how we design cognitive assessment tools and 452 

tests for early diagnosis of memory impairments, and in understanding how and why we 453 

process and remember certain images over others in our complex, visual world. 454 
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