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Abstract 17 

During memory recall and visual imagery, reinstatement is thought to occur as an 18 

echoing of the neural patterns during encoding. However, the precise information in these 19 

recall traces is relatively unknown, with previous work primarily investigating either broad 20 

distinctions or specific images, rarely bridging these levels of information. Using ultra-high-field 21 

(7T) fMRI with an item-based visual recall task, we conducted an in-depth comparison of 22 

encoding and recall along a spectrum of granularity, from coarse (scenes, objects) to mid (e.g., 23 

natural, manmade scenes) to fine (e.g., living room, cupcake) levels. In the scanner, participants 24 

viewed a trial-unique item, and after a distractor task, visually imagined the initial item. During 25 

encoding, we observed decodable information at all levels of granularity in category-selective 26 

visual cortex. In contrast, information during recall was primarily at the coarse level with fine 27 

level information in some areas; there was no evidence of mid-level information. A closer look 28 

revealed segregation between voxels showing the strongest effects during encoding and those 29 

during recall, and peaks of encoding-recall similarity extended anterior to category-selective 30 

cortex. Collectively, these results suggest visual recall is not merely a reactivation of encoding 31 

patterns, displaying a different representational structure and localization from encoding, 32 

despite some overlap. 33 

 34 
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Introduction 39 

When we visually recall an object or scene, our memory contains rich object and spatial 40 

information (Bainbridge et al. 2019). During such recollection, our brain is thought to reinstate 41 

neural patterns elicited by the initial perception (McClelland et al. 1995; Buckner and Wheeler 42 

2001; Tompary et al. 2016; Dijkstra et al 2019). One common view is that the hippocampus 43 

indexes populations of neocortical neurons associated with that memory (Teyler and Rudy 44 

2007; Danker and Anderson 2010; Schultz et al. 2019). Under this view, representations in 45 

hippocampus are largely independent of a memory’s perceptual content (Davachi 2006; Liang 46 

et al. 2013; Huffman and Stark 2014). In contrast, the neocortex is thought to show sensory 47 

reinstatement, where the same regions show the same representations during recall as during 48 

encoding (Wheeler et al. 2000; Kahn et al. 2004; Staresina et al. 2012; Ritchey et al. 2013; Lee et 49 

al. 2012; O’Craven and Kanwisher 2000; Dijkstra et al. 2017). However, prior work has focused 50 

on specific levels of information (e.g. broad stimulus class, specific image) and the extent to 51 

which representations during recall reflect the same information as during perception, at all 52 

levels of granularity (from individual exemplar up to broad stimulus category), is unclear. Here, 53 

using ultra-high-field (7T) fMRI, we conducted an in-depth investigation of the content of 54 

encoded and recalled representations of objects and scenes across cortex, hippocampus, and 55 

the medial temporal lobe, assessing the granularity of detail in the representations of individual 56 

items. 57 

First, we employed a hierarchically organized stimulus set (Figure 1a) with three levels 58 

of granularity from coarse (scenes/objects) to mid (e.g., natural/manmade scenes) to fine (e.g., 59 

bedrooms/conference rooms) level. Prior work comparing encoding and recall have primarily 60 



investigated memory content at opposite ends of this granularity spectrum. At a coarse level, 61 

recall of stimulus classes (faces, scenes, objects) have been reported to reactivate high-level 62 

visual regions (Polyn et al. 2005; Johnson et al. 2009; Reddy et al. 2010; LaRocque et al. 2013) 63 

and produce differentiable responses in hippocampus (Ross et al 2018). At the fine level, other 64 

work has shown reinstatement for individual images, with specific visual stimuli decodable in 65 

high-level visual cortex (Dickerson et al. 2007; Buchsbaum et al. 2012; Lee et al. 2012; Kuhl and 66 

Chun 2014) and medial temporal lobe (Zeineh et al. 2003; Gelbard-Sagiv et al. 2008; Chadwick 67 

et al. 2010; Wing et al. 2015; Mack and Preston 2016; Tompary et al. 2016; Lee et al. 2019). 68 

Decoding for specific images (Thirion et al. 2006; Naselaris et al. 2015), positions (Stokes et al. 69 

2011) and orientations (Klein et al. 2004; Albers et al. 2013) is even present in early visual 70 

cortex during visual imagery. However, it is often unclear what information is driving 71 

discrimination across the brain: fine-level image-specific information, coarse-level perceptual 72 

category information, or information unrelated to stimulus content such as memory strength. 73 

For example, while recalled grating orientation is decodable from early visual cortex (V1-V3), 74 

reinstatement strength but not content is decodable from the hippocampus (Bosch et al. 2014). 75 

Further, few studies have investigated the ability to detect reinstatement of mid-level 76 

information (e.g., is it a natural or manmade scene, a big or small object) during recall, even 77 

though such information is known to be decodable during perception (e.g., Park et al. 2011; 78 

Kravitz et al. 2011; Konkle et al. 2012). Our approach using nested levels of stimulus 79 

information reveals what granularity of information is contained in regions across the visual 80 

processing pathway, and whether reinstatement is simply an echo of the same response from 81 

encoding to recall. 82 



 Second, to isolate the activity specific to recall, we adopted a visual imagery task 83 

focusing on recall of individual items without requiring the learning of cue-stimulus 84 

associations, which have commonly been used (e.g., Ganis et al. 2004; Kuhl et al. 2012; Zeidman 85 

et al. 2015a; Jonker et al. 2018). Recalled representations in associative tasks are likely to 86 

contain information not only about the recalled item, but also the cue and the association itself. 87 

Further, there are differences in neocortex when performing an associative versus item-based 88 

memory task (Staresina and Davachi 2006). In fact, the neural representation of a target may be 89 

largely dependent on what cue it is associated with (Xiao et al. 2017). Here, we employ an item-90 

based recall task in which participants encode trial-unique images, and following a distractor 91 

task, recall that specific image. This approach allows us to investigate the recall of individual 92 

items, without the learning of associations. 93 

 Using this direct recall task and nested stimulus structure, we find striking differences in 94 

the representational structure and spatial localization for visual encoding and recall, suggesting 95 

recall patterns are not just a repetition of patterns during encoding, despite some similarities. 96 

 97 

Materials and Methods 98 

Participants 99 

Thirty-four adults were recruited for the experiment. All participants were healthy, 100 

right-handed, and had corrected or normal vision. Twelve participants were unable to complete 101 

the experiment due to discomfort in the 7T scanner, drowsiness, or scanner malfunction, and 102 

their data were excluded from the study. This level of participant dropout is not unusual for 7T 103 

scans, given that nausea and vertigo occasionally occur, and the bore is more restrictive than 104 



the more standard 3T scanners. The final set of participants included twenty-two adults (fifteen 105 

female; mean age: 24 years, standard deviation: 3.4 years, range: 19-35 years). All participants 106 

provided consent following the guidelines of the National Institutes of Health (NIH) Institutional 107 

Review Board (National Institute of Mental Health Clinical Study Protocol NCT00001360, 93M-108 

0170), and were compensated for their participation. 109 

 110 

Stimuli 111 

Stimulus images comprised 192 images with nested categorical structure (Figure 1a). 112 

We refer to the different levels of information as coarse, mid, and fine. At a coarse level, 50% of 113 

the stimuli were objects and 50% scenes.  114 

At a mid-level, the objects and scenes were varied according to factors known to show 115 

differential responses in the brain during perception. The objects were made up of four object 116 

types, varying along two factors: 1) small / big objects (Konkle et al. 2012), and 2) tool / non-117 

tool objects (Valyear et al. 2007; Mahon et al. 2007; Beauchamp and Martin 2007). Big objects 118 

were selected as objects generally larger than a 1-foot diameter and small objects were those 119 

smaller than a 1-foot diameter. Tools were defined as objects commonly grasped by one’s 120 

hands using a power grip (e.g., Grèzes et al. 2003), although note that there are multiple ways 121 

tools are defined in the field (Lewis 2006). Similarly, the scenes were made up of four scene 122 

types, varying along two factors: 1) natural / manmade (Park et al. 2011), and 2) open / closed 123 

(Kravitz et al. 2011). Natural scenes were defined as those primarily made up of natural objects 124 

(i.e., plants, rocks, sand, ice), while manmade scenes were primarily made of artificial objects 125 

(i.e., buildings, furniture). Open scenes were defined as those with an open spatial extent, while 126 



closed scenes were defined as those in which the viewer is enclosed by boundaries (Park et al. 127 

2011). 128 

At a fine-level, each object or scene type contained three categories, with eight 129 

exemplars for each object or scene category (e.g., small, non-tool objects: bowl, cupcake, 130 

flowers; closed, manmade scenes: bathroom, conference hall, living room; see Figure 1a for all 131 

fine-level categories). Images were all square 512 x 512 pixel images presented at 8 degrees of 132 

visual angle, and objects were presented cropped in isolation on a white background. 133 

 134 

  135 



a) 136 

 137 

b) 138 

 139 

Figure 1. Experimental stimuli and task. (a) Nested structure of stimuli and example images. 192 trial-unique 140 

images were encoded and recalled by participants, arranged under nested structure based on the coarse level 141 

(object / scene), mid level (e.g., open / closed or natural / manmade scene), and fine level (mountains / lake) of 142 

stimulus organization. Each fine-level category contained 8 different exemplar images (e.g., 8 different lake 143 

photographs). (b) The timing of each trial. Participants studied an image for 6 s, performed a distractor task 144 

requiring detection of an intact image amongst scrambled images for 4 s, and then after a randomized jitter of 1-4 145 

s, recalled the original image through visual imagery for 6 s. Finally, they indicated the vividness of their memory 146 

with a button press. 147 

 148 
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In-scanner recall task and post-scan recognition task 149 

Participants first completed a single run of a 7-min 6-sec block-design localizer scan to 150 

identify scene- and object-selective regions. In this localizer, participants viewed 16-sec blocks 151 

of images of objects, scenes, faces, and mosaic-scrambled scenes and identified consecutive 152 

repeated images. All images used in the localizer were distinct from those used in the main 153 

experiment.  Participants then completed eight runs of an item-based memory recall task 154 

requiring visual imagery (Figure 1b). In each trial, participants studied a trial-unique stimulus 155 

image for 6 s. After a 1 s fixation, they performed a distractor task in which they viewed a 156 

stream of 16 quickly presented images (250 ms each) and had to press a button as soon as they 157 

saw the sole intact image in a stream of mosaic-scrambled images. Scrambled and intact target 158 

images were taken from a separate stimulus set, and were chosen to be of the same coarse 159 

level (i.e., object or scene) as the studied image in order to keep general visual properties 160 

consistent (i.e., not switching from one type of stimulus to another). These distractor images 161 

were taken with random mid and fine levels, unrelated to the stimulus being encoded and 162 

recalled. Intact object images were presented as an intact object against a mosaic-scrambled 163 

background, so that participants would have to fixate the object to successfully perform the 164 

task (rather than identify white edges). The distractor task lasted for 4 s total and was followed 165 

by a 1-4 s jittered interval in which participants were instructed to wait and maintain fixation. 166 

The word “RECALL” then appeared on the screen for 6 s, and participants were instructed to 167 

silently visually imagine the originally studied image in as much detail as possible. Finally, 168 

following the “RECALL” phase, participants were given 2 s to press a button indicating the 169 

vividness of their memory as either no memory, low vividness, or high vividness. The next trial 170 



then continued after a 1 s delay. Participants were instructed that the task was difficult, and 171 

they should focus on reporting their vividness truthfully. On average, participants reported 172 

‘high vividness’ on 60.8% of trials (SD=16.9%), ‘low vividness’ on 29.9% of trials (SD=12.8%), and 173 

‘no memory’ on 9.31% of trials (SD=8.38%). Trials in which participants indicated “no memory” 174 

were not included in any of the main analyses of the data. Each run contained 24 trials, lasting 8 175 

min 38 s, and participants completed 8 runs total. Each run included three “catch trials” that 176 

skipped the recall phase, in order to keep participants vigilant, to discourage them from pre-177 

emptively recalling the target image, and to better separate encoding from distractor and recall 178 

phases during deconvolution. Each fine-level stimulus category (e.g., guitar, cupcake) was 179 

shown once per run, and each stimulus exemplar image was only used once in the entire 180 

experiment, so that there would be no memory effects on subsequent presentations of the 181 

same image.  182 

 After the scan, participants performed a post-scan recognition task to test their memory 183 

for the images studied in the scanner. Participants were presented with all 192 images studied 184 

in the scanner randomly intermixed with 192 foil images of the same fine-level stimulus 185 

categories and were asked to indicate for each image whether it was old or new. Two 186 

participants were unable to complete the post-scan recognition task due to time constraints. 187 

Analyses on the post-scan recognition data as well as vividness ratings are reported in the 188 

Supplementary Material (SM1, SM2). 189 

 190 

MRI acquisition and preprocessing 191 



 The experiment was conducted at the NIH, using a 7T Siemens MRI scanner and 32-192 

channel head coil. Whole-brain anatomical scans were acquired using the MP2RAGE sequence, 193 

with 0.7 mm isotropic voxels. Whole-brain functional scans were acquired with a multiband EPI 194 

scan of in-plane resolution 1.2 x 1.2 mm and 81 slices of 1.2 mm thickness (multiband factor = 195 

3, repetition time = 2 s, echo time = 27 ms, matrix size = 160 × 160, field of view = 1728 × 1728, 196 

flip angle = 55 degrees). Slices were aligned parallel with the hippocampus and generally 197 

covered the whole brain (when they did not, sensorimotor parietal cortices were not included). 198 

Functional scans were preprocessed with slice timing correction and motion correction using 199 

AFNI and surface-based analyses were performed using SUMA (Cox 1996; Saad and Reynolds 200 

2012).  201 

 202 

FMRI Region of Interest (ROI) Definitions 203 

For each participant, key ROIs for early visual cortex, object selective cortex, scene 204 

selective cortex, and hippocampus were determined a priori and defined using functional and 205 

anatomical criteria (Figure 2). Using the independent functional localizer, we identified three 206 

scene-selective regions with a univariate contrast of scenes > objects: PPA (Epstein & Kanwisher 207 

1998), medial place area (MPA; Silson et al. 2016), and occipital place area (OPA; Dilks et al. 208 

2013). We localized object-selective regions lateral occipital (LO) and posterior fusiform (pFs) 209 

with a univariate contrast of objects > scrambled images (Grill-Spector et al. 2001). Finally, we 210 

localized early visual cortex (EVC) with a univariate contrast of scrambled images > baseline. 211 

With each contrast, the functional ROIs were defined as the contiguous set of at least 20 voxels 212 

showing significant activation for the contrast, located within the broader anatomical areas 213 



described in the literature (e.g., PPA should be in and around the collateral sulcus, Epstein and 214 

Baker 2019; LO should be within lateral occipital regions). For all contrasts, we first identified 215 

these contiguous sets of voxels with a univariate contrast with a False Discovery Rate (FDR)-216 

corrected threshold of q=0.001. When a contiguous set of voxels could not be identified, we 217 

looked at increasingly liberal thresholds of q=0.005, q=0.01, q=0.05, p=0.001, p=0.005, p=0.01, 218 

and p=0.05 until a contiguous set of 20 voxels passing that threshold was identified. If no 219 

contiguous set of voxels was identified at this threshold, then the ROI was determined missing 220 

for that given participant. Left and right ROIs were combined to create bilateral ROIs in the 221 

analyses. Overlapping voxels between scene- and object-selective regions were discarded from 222 

any ROI. LO, pFs, PPA, and EVC were identified in 22 participants, OPA in 21 participants, and 223 

MPA in 20 participants. Anatomical ROIs were localized using FreeSurfer’s recon-all function 224 

using the hippocampal-subfields-T1 flag (Iglesias et al. 2015), and then visually inspected for 225 

accuracy. This hippocampus parcellation function splits the hippocampus into the head/body 226 

(Hip-HB) and tail (Hip-T), and within the head/body region further segments the hippocampus 227 

into different subfields (dentate gyrus, CA1, CA3, and subiculum; Iglesias et al. 2015). We did 228 

not find meaningful differences across subfields (all subfields either showed identical results to 229 

the Hip-HB or Hip-T), but report those results in the Supplementary Material (SM3). This 230 

FreeSurfer parcellation also localized the perirhinal cortex (PRC) and parahippocampal cortex 231 

(PHC) within the medial temporal lobe (MTL). PHC was determined as a participant’s 232 

anatomically defined PHC minus voxels already contained with their functionally defined PPA. 233 

For the main body of the text, we report the results from the Hip-HB (with subfields combined), 234 



Hip-T, PRC, and PHC. A table of ROI sizes by participant is provided in the Supplementary 235 

Material (SM4). 236 

 237 

Figure 2. Main regions of interest (ROI). The current study focused on a set of visual and memory-related ROIs. 238 

Visual regions consisted of early visual cortex (EVC), object-selective regions of the lateral occipital (LO) and the 239 

posterior fusiform (pFs), and scene-selective regions of the parahippocampal place area (PPA), medial place area 240 

(MPA), and occipital place area (OPA). Visual regions were individually localized using functional localizers in each 241 

participant; shown here are probabilistic ROIs of voxels shared by at least 12% of participants. Memory-related 242 

regions consisted of the hippocampus divided into anterior (head and body) and posterior (tail) subregions, as well 243 

as the perirhinal cortex (PRC, not shown) and parahippocampal cortex (PHC, not shown). These ROIs were 244 

segmented automatically using anatomical landmarks. 245 

 246 

 247 

Whole-Brain Univariate Analyses 248 

We conducted whole-brain univariate contrasts using a general linear model (GLM) that 249 

split the trials into six regressors along two factors: 1) encoding / distractor / recall, and 2) 250 

scenes / objects. Six additional regressors for movement were also included. Additionally, trials 251 

in which participants indicated they had “no memory” for the item were modeled separately as 252 

three regressors (for the encoding, distractor, and recall periods) in the GLM to avoid them 253 

contributing to either target stimulus responses or an implicit baseline. We then performed 254 



whole-brain t-contrasts of scenes vs. objects separately during encoding and recall. All whole-255 

brain contrasts were projected onto the cortical surface using AFNI surface mapper SUMA 256 

(Saad and Reynolds 2012). 257 

With these whole-brain analyses, we located and compared the peak voxels of 258 

activation during encoding and recall. For each participant, we localized the peak voxel within 259 

each broad visual ROI definition (e.g., for PPA, voxels in and around the collateral sulcus, 260 

Epstein and Baker 2019) separately for encoding and recall. We extracted the MNI coordinates 261 

for each participant for the voxels with the highest object activation near LO and pFs, and the 262 

highest scene activation near PPA, MPA, and OPA. The peaks of encoding and recall were 263 

directly compared across participants with a paired Wilcoxon signed rank test, comparing the 264 

median anterior-posterior coordinates between encoding and recall. 265 

 266 

Representational Similarity Analyses and Discrimination Indices 267 

Multivariate analyses were conducted to look at the representations of different 268 

stimulus information during encoding and recall, across brain regions. For these analyses, the 269 

experimental data were first split into two independent halves – even runs and odd runs. For 270 

each split half, a GLM was calculated, modeling separate regressors for each fine-level category 271 

(e.g., cupcake) for the encoding period (6 s boxcar function), distractor period (4 s boxcar), and 272 

recall period (6 s boxcar). Each event (e.g., encoding a cupcake) thus had two resulting beta 273 

estimates: one across even runs, and one across odd runs. As in the univariate analysis GLM, 274 

trials in which participants indicated they had no memory for the image were captured with 275 

three additional regressors for the encoding period, the distractor period, and the recall period. 276 



The estimated motion parameters from the motion correction were included as six further 277 

regressors. 278 

We then investigated the similarity between different types of stimulus information 279 

during encoding, recall, and distractor periods, using representational similarity analyses (RSA; 280 

Kriegeskorte et al. 2008). For each ROI, we created a representational similarity matrix (RSM) 281 

comparing the similarity of all pairs of fine-level stimulus category (e.g., cupcake vs. guitar). 282 

Similarity was calculated as the Pearson’s correlation between the voxel values (t-statistic) in an 283 

ROI for one fine-level category (e.g., cupcake) from one half of the runs (e.g., odd runs), with 284 

the voxel values for another category (e.g., guitar) from the other half (e.g., even runs). 285 

Specifically, pairwise item similarity was taken as the average of the correlation with one split 286 

(odd runs for item A, even runs for item B) and correlation with the opposite split (even runs for 287 

item A, odd runs for item B). This metric indicates the similarity in the neural representations of 288 

two categories, and importantly, because the comparisons use separate halves of the data, we 289 

can observe a category’s similarity to itself across runs. This self-similarity measure thus 290 

quantifies the degree to which a given region shows similarity across exemplars within category 291 

(i.e., are cupcakes similar to other cupcakes). Correlation coefficients were all corrected with 292 

Fisher’s Z-transformations. We focused our main analyses on three RSMs: 1) correlations of the 293 

encoding responses (Encoding RSM), 2) correlations of the recall responses (Recall RSM), 3) 294 

correlations of the encoding responses with the recall responses (Cross-Discrimination RSM). 295 

These different classifications allow us to see what stimulus information exists separately 296 

during encoding and recall, as well as what information is shared between encoding and recall.   297 



From these RSMs, we conducted discriminability analyses, which show the degree to 298 

which each ROI can discriminate the different conditions of fine-, mid-, and coarse-level 299 

information (e.g., do the responses in PPA discriminate natural vs. manmade scenes?). For each 300 

comparison of interest, we computed a discrimination index D, calculated as the difference of 301 

the mean across-condition correlations (e.g., scenes with objects) from mean within-condition 302 

correlations (e.g., scenes with other scenes; Kravitz et al. 2011; Cichy et al. 2014; Harel et al. 303 

2013; Harel et al. 2014; Henriksson et al. 2015). The intuition behind this index is that if an ROI 304 

contains information about that comparison, then within-condition similarity should be higher 305 

than across-condition similarity (e.g., if the PPA does discriminate natural vs. manmade scenes, 306 

then natural scenes should be more similar to other natural scenes than manmade scenes).  307 

Discriminability analyses at all levels of stimulus granularity were calculated from the same 308 

underlying correlation matrix, and there were close to the same number of trials contributing 309 

to the calculation of each cell in the matrix (only differing due to the exclusion of no-memory 310 

trials). However, do note that the comparisons of different granularity use different proportions 311 

of the matrix; e.g., the coarse level of objects versus scenes utilizes the whole matrix, while the 312 

mid level of natural versus manmade only looks within scenes. We compared these 313 

discrimination indices versus a null hypothesis of 0 discrimination using one-tailed t-tests. While 314 

multivariate analyses may often violate the assumptions of parametric statistics (Allefeld et al. 315 

2016), in practice, one-tailed t-tests to evaluate discrimination indices are not meaningfully 316 

different from non-parametric methods (Nili et al. 2020). However, we confirmed all results 317 

hold when also calculating significance with a permutation test across 1,000 RSM permutations 318 

(Supplementary Material SM5). Mid-level discriminability was only computed within same-319 



coarse-level items (e.g., only scenes were used for the natural vs. manmade comparison), and 320 

fine level discriminability was only computed within same-mid-level items (e.g., when looking at 321 

the discriminability of living rooms, they were only compared to other closed, manmade 322 

scenes). Refer to Figure 3 for a depiction of these discrimination indices and to see example 323 

RSMs. All statistics reported are FDR-corrected within each ROI across all 21 discriminations 324 

(the seven discriminations shown in Figure 3, each for encoding, recall, and cross-325 

discrimination) at a value of q < 0.05. 326 

 327 

 328 

Figure 3 – Calculating information discriminability from representational similarity matrices. (Left) Depictions of 329 

the cells of the representational similarity matrices (RSMs) used to calculate discrimination indices for key regions 330 

of interest (ROIs). The RSMs represent pairwise Pearson’s correlations of stimulus groupings calculated from ROI 331 

voxel t-values, compared across separate run split halves (odd versus even runs). These depictions show which 332 

cells in the matrices are used in the calculation of discriminability of different properties, with green cells indicating 333 

within-condition comparisons, which are compared with grey cells indicating across-condition comparisons. For all 334 

discriminability calculations except fine-level discrimination of individual categories, the diagonal was not included. 335 
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All operations were conducted on the lower triangle of the matrix, although both sides of the diagonal are shown 336 

here for clarity. (Right) Examples of encoding and recall RSMs from the data in the current study, specifically the 337 

rank-transformed average RSM for the parahippocampal place area (PPA), lateral occipital (LO), and the 338 

hippocampus head and body. Blue cells are more similar, while red cells are more dissimilar. 339 

 340 

Discrimination-based Searchlight Analyses 341 

We also conducted discriminability analyses using spherical searchlights (3-voxel radius) 342 

in two ways. First, we conducted discriminability analyses (as described above) for searchlights 343 

centered on voxels in the ROIs. For each searchlight, we obtained a scene-object 344 

discriminability metric during encoding and one during recall, allowing us to examine the 345 

relationship between encoding and recall information in these ROIs. Note that while the center 346 

voxel in the searchlight was located within each given ROI, peripheral voxels could fall outside 347 

of an ROI’s boundaries. This is to ensure that searchlights are of equal volume throughout the 348 

ROI and will result in only a small amount of smoothing of the ROI’s borders (e.g., 3 voxels at 349 

maximum). 350 

Second, we conducted discriminability analyses in searchlights iteratively moved 351 

through each individual’s brain, to examine ability to discriminate information outside of our 352 

pre-defined ROIs. Group maps were combined with a one-tailed t-test comparing group 353 

discrimination indices versus no discrimination (0). Group maps were thresholded at p < 0.005 354 

uncorrected for visualization purposes however we also provide unthresholded maps. We 355 

conducted these searchlights looking at both discriminability of information within memory 356 

process type (encoding or recall), as well as ability to cross-discriminate information between 357 

encoding and recall. We also identified the locations of peak voxels for encoding, recall, and 358 



cross-discrimination, using the same methods as described in the Whole-Brain Univariate 359 

Analyses. 360 

 361 

Encoding-recall correlation and overlap analyses 362 

 In order to directly compare encoding and recall information within ROIs, we conducted 363 

two separate analyses. We specifically focused on coarse level discrimination of objects versus 364 

scenes, as this discrimination is reliably found across regions for both encoding and recall (see 365 

Results). 366 

First, we calculated the correlation between encoding and recall discrimination indices 367 

in the searchlights within each ROI (see previous section). For each searchlight centered within 368 

an ROI, we Spearman rank correlated its coarse level discrimination index (scenes vs. objects) 369 

between encoding and recall. This analysis reveals the degree to which voxels that represent 370 

encoding information also represent recall information. High correlations indicate that voxels 371 

that can discriminate objects versus scenes during encoding can also discriminate them during 372 

recall, while low correlations provide evidence for no relationship between encoding and recall 373 

discriminability. Significance was calculated using a non-parametric Wilcoxon signed rank test, 374 

comparing the rank correlations against a null median of 0. 375 

Second, given the relatively low correlations we observed, we conducted an overlap 376 

analysis to determine the degree to which the most discriminative voxels are the same 377 

between encoding and recall. To perform this analysis, for each ROI, we took the top 10% 378 

discriminating encoding voxels and compared their overlap with the top 10% discriminating 379 

recall voxels. Chance level of overlap was calculated with permutation testing, by taking two 380 



random sets of searchlights (rather than the top ranked searchlights) consisting of 10% of the 381 

ROI size. Across 100 permutations per ROI per participant, we calculated the overlap between 382 

these two shuffled sets, and then took the average across all permutations as the chance level 383 

for each participant. This permuted level of chance ultimately resolves to 10% across all ROIs, 384 

which matches the computed chance level for this analysis - if you take two random sets of 10% 385 

of voxels, by chance, 10% of those voxels should overlap. Significance was calculated with a 386 

non-parametric paired Wilcoxon rank sum test comparing the true overlap percentage with the 387 

permuted random overlap percentage. 388 

 389 

Results 390 

 In the following sections, we examine the relationship between representations elicited 391 

during encoding and recall. First, we compare granularity of stimulus content representations in 392 

object- and scene-selective visual ROIs and the hippocampus. We observe reduced information 393 

during recall, particularly for mid-level information. Second, to directly compare encoding and 394 

recall representations, we conduct searchlight analyses to investigate the distribution of voxels 395 

showing the strongest discrimination during encoding, recall and cross-discriminability between 396 

these two phases, both within and outside the ROIs. We observe little correlation between 397 

discrimination during encoding and recall and find that the voxels that represent recalled 398 

information are frequently distinct from those that represent encoding information, with the 399 

strongest representations during recall anterior to the category-selective regions traditionally 400 

studied during perception.  401 

 402 



Decoding stimulus content from scene- and object-selective visual regions and medial 403 

temporal lobe 404 

 What aspects of a visual memory are represented in scene- and object-selective areas 405 

and medial temporal lobe during encoding and recall? We asked this question by discriminating 406 

stimulus information from the patterns of blood oxygen level dependent (BOLD) responses at 407 

various scales of stimulus granularity, ranging from a coarse level (scenes, objects), to a mid-408 

level (e.g., natural/manmade scene, big/small object), to a fine level (e.g., cupcake, guitar). This 409 

discrimination was conducted across independent exemplars, never including the same images 410 

in the training and testing sets of the decoding model. This allowed us to see what levels of 411 

information are represented in these regions, separate from an ability to distinguish identical 412 

images. Discrimination indices and their corresponding p-values (see Methods) for all ROIs are 413 

reported in Supplementary Material SM6. Here, in the text we only describe statistics that pass 414 

FDR correction, but all values including those where p < 0.05 but p does not pass FDR correction 415 

are included in this table. 416 

 417 

Visual ROIs: Detailed information during encoding, limited information during recall  418 

 We investigated discriminability in object-selective regions LO and pFs, scene-selective 419 

regions PPA, MPA, and OPA, and early visual cortex (Figure 4, refer to Supplementary Material 420 

SM6 for discrimination indices and individual statistics). 421 

We first examined what information was discriminable during the encoding period. All 422 

object- and scene-selective regions could discriminate coarse level information (objects vs. 423 

scenes), all p < 10-4. For mid-level object information, tool/non-tool could be discriminated in 424 



object-selective regions LO (p = 0.009) and pFs (p = 0.012), but object size did not show 425 

significant discriminability in any region. For mid-level scene information, open/closed could be 426 

discriminated in LO (p = 0.009), pFs (p = 0.002), and PPA (p = 0.001), while manmade/natural 427 

could be discriminated in LO (p = 0.001), PPA (p = 0.003), and MPA (p = 4.76 × 10-4). Finally, fine-428 

level object information could be discriminated in all regions except MPA (all p < 0.001), while 429 

the fine level for scenes could be discriminated in scene-selective regions PPA (p = 7.64 × 10-4) 430 

and OPA (p = 0.002). In addition, response patterns in the encoding period for all visual ROIs 431 

was predictive of reported memory vividness, and patterns in the LO, PPA, and OPA were 432 

predictive of subsequent recognition (Supplementary Material SM1, SM2). Overall, these 433 

results confirmed the findings of prior studies (e.g., Valyear et al. 2007; Walther et al. 2009; 434 

Park et al. 2011; Kravitz et al. 2011; Troiani et al. 2012), in which during encoding and 435 

perception, responses in scene- and object-selective regions can be used to distinguish various 436 

levels of information about visually presented scenes and objects. 437 

We next investigated the information present in these ROIs during recall. Discrimination 438 

of coarse-level information was significant in all visual regions (all p < 0.001). However, no 439 

region showed significant discriminability for any mid-level information (big/small, tool/non-440 

tool for objects and open/closed, natural/manmade for scenes; all p > 0.10). Also, no region 441 

showed fine-level object information during recall. However, significant fine-level information 442 

during recall of scenes was present in pFs (p = 0.009) as well as scene regions PPA (p = 0.011) 443 

and MPA (p = 0.008). In addition, response patterns from all visual areas during recall were 444 

predictive of recall vividness, although not predictive of subsequent recognition 445 

(Supplementary Material SM1, SM2). These results reveal that while visual regions maintain 446 



coarse-level information during recall, we find no evidence for mid-level stimulus information. 447 

Despite the lack of mid-level information, however, there is fine-level information in some 448 

regions. 449 

 To investigate which regions show a shared neural representation during encoding and 450 

recall, we conducted a cross-discrimination analysis identifying the degree to which a region 451 

shows similar patterns between encoding and recall. The only significant cross-discrimination 452 

was for the coarse level (objects versus scenes), which was found in pFs (p = 0.006) and MPA (p 453 

= 1.59 × 10-4). Significant cross-discrimination did not emerge for any mid-level information in 454 

any ROI (all q > 0.05), nor at the fine level in any ROI (all q > 0.05). These findings imply that 455 

encoding and recall may differ in their representational structure across different levels of 456 

information. 457 

 Given these effects in object- and scene-selective regions, we conducted a follow-up 458 

analysis to look at visual responses outside of category selective cortex, namely early visual 459 

cortex (EVC; Figure 4, Supplementary Material SM6). During encoding, EVC showed significant 460 

discrimination at the coarse level (p = 4.43 × 10-7), but no discrimination at the mid-level for 461 

scenes or objects (all q > 0.05). However, EVC did show significant discrimination of the fine-462 

level for both objects (p = 5.13 × 10-7) and scenes (p = 0.005). During recall, EVC again showed 463 

significant coarse-level discrimination (p = 0.004), no significant mid-level discrimination (all p > 464 

0.10), and significant fine-level discrimination for objects (p = 0.008) although not for scenes 465 

(p > 0.05). EVC did not show significant cross discrimination at any level (all p > 0.20). These 466 

results suggest that retinotopic information—driven by the visual features of different object 467 

categories and their differences from scenes—is likely discriminable during recall. However, 468 



mid-level information did not show differences in early visual processing during encoding, and 469 

was not discriminable during recall. 470 

 471 

 472 

Figure 4 – Information discriminability in scene- and object-selective regions. Discriminability for visual regions of 473 

interest (ROIs) for each stimulus property was calculated from the RSMs (as in Figure 3). Bar graphs indicate mean 474 

discrimination index for different comparisons across ROIs, are split by coarse stimulus class, and show three levels 475 

of discrimination: 1) the coarse level (objects versus scenes), 2) the mid level (objects: big/small, tools/non-tools; 476 

scenes: open/closed, natural/manmade), and 3) the fine level (specific object and scene categories). The y-axis 477 

represents the average discrimination index (D), which ranges from -1 to 1. Significance (*) indicates results from a 478 

one-tailed t-test versus 0, with a FDR-corrected level of q < 0.05 (applied to all 21 comparisons within each ROI). 479 

Values that do not pass FDR correction can still be seen in Supplementary Material SM6. Pink bars indicate 480 

discriminability during encoding trials, blue bars indicate discriminability during recall trials, and hatched purple 481 

bars indicate cross-discriminability (i.e., there is a shared representation between encoding and recall). Error bars 482 

indicate standard error of the mean.  483 
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 We conducted the same analyses in the hippocampus and medial temporal lobe regions 486 

(MTL) consisting of the perirhinal cortex (PRC) and parahippocampal cortex (PHC) (Figure 5). 487 

We primarily focused on the segregation of the hippocampus into anterior (Hip-HB) and 488 

posterior (Hip-T) regions, but results for the individual subfields can be found in the 489 

Supplementary Material (SM3). 490 

During encoding, significant coarse-level discrimination of objects versus scenes was 491 

present in Hip-HB (p = 3.28 × 10-4), PRC (p = 5.74 × 10-5), and PHC (p = 4.62 × 10-6), but not Hip-T 492 

(p = 0.108). There was no mid-level information present in any of these regions (all q > 0.05), 493 

nor was there fine-level information (all q > 0.05). During recall, course-level information was 494 

not detected in the hippocampus (Hip-HB: p = 0.82; Hip-T: p = 0.48), but was discriminable in 495 

PRC (p = 0.004) and PHC (p = 0.003). No mid- or fine-level information was present during recall 496 

in any of these regions (all p > 0.20). Finally, significant cross-discriminability between encoding 497 

and recall was found in the PRC (2.53 × 10-4) and PHC (3.99 × 10-4), but not in the hippocampus 498 

(Hip-HB: p = 0.082; Hip-T: p = 0.10). No mid-level or fine-level information was cross-499 

discriminable in these regions (all p > 0.10). 500 

Although hippocampus did not show content-related information beyond the coarse 501 

level during encoding, additional analyses revealed other discriminable information present in 502 

the hippocampus. Patterns during recall in the hippocampus were significantly predictive of 503 

reported memory vividness, although patterns during encoding were not (Supplementary 504 

Material SM1, SM2). Further, an analysis comparing the representational structure in different 505 

ROIs revealed that while visual areas were very dissimilar from the hippocampus during the 506 



encoding period, their patterns become more similar to those of the hippocampus during recall 507 

(Supplementary Material SM7, SM8). 508 

 509 

 510 

Figure 5 – Information discriminability in the hippocampus and medial temporal lobe. Discriminability for 511 

hippocampal ROIs, perirhinal cortex (PRC), and parahippocampal cortex (PHC) for each stimulus property was 512 

calculated from the RSMs. Bar graphs are displayed in the same manner as Figure 4, and indicate mean 513 

discrimination index for comparisons of different levels of stimulus information (coarse, mid-, and fine levels for 514 

objects and scenes). Pink bars indicate discriminability during encoding trials, blue bars indicate discriminability 515 

during recall trials, and hatched purple bars indicate cross-discriminability (i.e., there is a shared representation 516 

between encoding and recall). Error bars indicate standard error of the mean. Asterisks (*) indicate significance at 517 

a FDR corrected level of q < 0.05. 518 
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Discrimination of Information During the Distractor Period 520 

To ensure any ability to discriminate information during recall was not due to bleed-521 

over from the encoding period or active visual working memory strategies, we computed 522 

discrimination indices during the distractor period. Distractor stimuli differed by coarse level 523 

category (scenes, objects), and indeed coarse level information was available in LO 524 

(discrimination index D = 0.02, p = 5.94 × 10-5), PPA (D = 0.02, p = 5.00 × 10-5), and OPA (D = 525 

0.02, p = 6.13 × 10-5), although not in pFs, MPA, Hip-HB, PRC, or PHC (q > 0.05), all of which 526 

showed discrimination during the encoding and recall periods (with the exception of the Hip-527 

HB). Mid-level and fine level information was not discriminable in any ROI during the distractor 528 

period (q > 0.05), despite the presence of such information during the encoding period. 529 

Importantly, the lack of fine-level information during the distractor period contrasts with the 530 

stronger and significant fine-level information in pFs, PPA, and MPA during the recall period. 531 

Thus, it is highly unlikely that information measured during recall reflects carry over from the 532 

encoding period or active visual working memory strategies. 533 

 534 

In sum, the analyses in this section reveal that while during encoding information can be 535 

discriminated in many of these ROIs from all levels of stimulus granularity (fine, mid, and 536 

course), there is limited information available during recall. Namely, while coarse- and fine-level 537 

information is available in many of the ROIs, mid-level information was not detected in any ROI. 538 

Significant cross-discrimination between encoding and recall was also only present at the 539 

coarse level of information. These results suggest distinct representational structure during 540 



encoding and recall, and motivate a direct comparison between encoding and recall 541 

representations at the sub-ROI level. 542 

  543 

Direct comparison of encoding and recall discriminability within ROIs 544 

 We observed cross-discrimination in some regions (pFS, MPA, PRC, PHC), but not in 545 

others (LO, PPA, OPA, Hip-HB, Hip-T), providing mixed evidence for shared neural substrates for 546 

encoding and recall across these regions. To further investigate the relationship between 547 

encoding and recall discrimination, we directly compared discrimination indices across each 548 

region. Because only coarse-level information showed cross-discrimination in any region, we 549 

focused our analyses here on the coarse discrimination of objects versus scenes. For each ROI, 550 

we computed Spearman rank correlations between encoding and recall discrimination 551 

searchlights (see Methods). While some regions showed significant correlations between 552 

encoding and recall discriminability (MPA: Median Spearman’s rank correlation ρ = 0.210, 553 

Wilcoxon signed rank test: Z = 2.52, p = 0.012; LO: ρ = 0.104, Z = 3.17, p = 0.002; pFs: ρ = 0.200, 554 

Z = 2.26 p = 0.024; Hip-HB: ρ = 0.065, Z = 2.09, p = 0.036; PHC: ρ = 0.244, Z = 3.72, p = 2.01 × 10-555 

4), others did not (PPA: ρ = -0.006, Z = 1.31, p = 0.189; OPA: ρ = 0.030, Z = 1.28, p = 0.200; Hip-T: 556 

ρ = -0.045, Z = 0.02, p = 0.987; PRC: ρ = 0.168, Z = 1.79, p = 0.074). However, even in those cases 557 

where we found significant effects, the correlations tended to be weak, and every ROI had 22% 558 

(5 out of 22) or more of the participants who showed negative correlations between encoding 559 

and recall. Moreover, the distribution of the plotted data often revealed an L-shape distribution 560 

with greatest similarity between encoding and recall for the voxels with the lowest 561 

discrimination scores (Figure 6).  562 



To compare encoding and recall discriminability further, we focused on the top 10% of 563 

searchlights that showed encoding discriminability and compared their overlap with the top 564 

10% of searchlights that showed recall discriminability within each ROI (Figure 6, Methods). If 565 

the same voxels perform encoding and recall discrimination, we should find significantly higher 566 

overlap than chance (approaching 100%). Conversely, if encoding and recall information 567 

comprise distinct sets of voxels, we should find equal or lower overlap compared to chance 568 

(~10%, estimated by 100 permuted shuffles). PPA showed significantly lower overlap than 569 

chance (Median = 9.15%, Wilcoxon rank sum test: Z = 1.96, p = 0.050), while pFs showed 570 

significantly higher overlap (M = 19.14%, Z = 2.05, p = 0.040). All other regions showed no 571 

significantly different overlap than predicted by chance (MPA: 16.9%; OPA: 11.2%; LO: 14.03%; 572 

Hip-HB: 15.6%; Hip-T: 15.4%; PRC: 13.3%; PHC: 20.2%; all p > 0.10).  These results suggest a 573 

limited relationship between encoding and recall across all visual and memory regions. pFs 574 

shows high overlap and significant correlation between encoding and recall searchlights, in 575 

addition to significant cross-discrimination across encoding and recall, suggesting some shared 576 

neural substrate. In contrast, PPA shows no correlation and significantly low overlap in addition 577 

to an absence of cross-discrimination, suggesting distinct neural substrates between encoding 578 

and recall. The remaining ROIs show mixed evidence, with relatively low correlations between 579 

encoding and recall and no difference in overlap from chance, suggesting limited shared 580 

information between encoding and recall. 581 



  582 

Figure 6 – Comparing encoding and recall discriminability within the ROIs. (Top) Example ROIs from a single 583 

participant, where each point represents a voxel-centered spherical searchlight in that ROI and is plotted by the 584 

object/scene discrimination index during encoding (x-axis) versus the object/scene discrimination index during 585 

recall (y-axis). The 10% of searchlights showing strongest recall discriminability are colored in blue, while the 10% 586 

of searchlights showing strongest encoding discriminability are colored in red. Searchlights that overlap between 587 

the two (those that demonstrate both encoding and recall discrimination) are colored in purple. The patterns in 588 

this participant mirror the patterns found across participants—PPA shows low (in this case no) overlap, while pFs 589 

shows higher overlap. (Bottom) Histograms for these ROIs showing participant distribution of the percentage of 590 

overlap between the top 10% of encoding discriminating and top 10% of recall discriminating voxels. The arrow 591 

represents the participant’s data plotted above, while the dashed red line shows the median overlap percentage 592 

across participants. 593 

 594 

Whole-Brain Investigation of Encoding and Recall Effects 595 

 596 



 597 

Figure 7 – Whole-brain activation of objects and scenes during encoding and recall. Univariate whole-brain t-598 

statistic maps of the contrast of objects (red/yellow) versus scenes (blue/cyan) in encoding (left) and recall (right). 599 

Contrasts show group surface-aligned data (N=22), presented on the SUMA 141-subject standard surface brain 600 

(Saad and Reynolds 2012). Outlined ROIs are defined by voxels shared by at least 25% participants from their 601 

individual ROI definitions (using independent functional localizers), with the exception of the pFs and OPA which 602 

were defined by 13% overlap (there were no voxels shared by 25% of participants). The encoding maps are 603 

thresholded at FDR corrected q<0.05. For the recall maps, no voxels passed FDR correction, so the contrast 604 

presented is thresholded at p<0.01 for visualization purposes. Smaller surface maps show unthresholded results. 605 

 606 

 Given the differences we observed between encoding and recall within ROIs, we 607 

conducted follow-up analyses at the whole-brain level. Looking at a group univariate contrast of 608 

objects versus scenes during encoding (Figure 7), we confirm that stimulus class selectivity is 609 

strongest in ROIs predicted by the literature: LO and pFs show high sensitivity to objects, while 610 

PPA, MPA, and OPA show high sensitivity to scenes (e.g., Epstein and Kanwisher 1998; Grill-611 

Spector et al. 2001). Interestingly, in EVC we observe stronger responses for scenes during 612 

encoding and stronger responses for objects during recall. This may explain the negatively 613 

trending cross-discrimination between encoding and recall in EVC. However, a group univariate 614 

contrast of objects versus scenes during recall reveals that recall scene-selectivity appears 615 
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strongest in areas anterior to PPA and MPA, and recall object-selectivity appears strongest in 616 

areas anterior to LO and in early visual cortex. We quantified this observation by comparing the 617 

locations of the peak encoding voxel and the peak recall voxel around each ROI for every 618 

participant. Recall peaks were significantly anterior to encoding peaks across participants 619 

bilaterally in PPA (Left Hemisphere: Wilcoxon signed rank test Z = 2.32, p = 0.020; Right 620 

Hemisphere: Z = 2.65, p = 0.008) and OPA (LH: Z = 2.52, p = 0.012; RH: Z = 2.91, p = 0.004), and 621 

in the left pFs (Z = 2.68, p = 0.007), left MPA (Z = 2.45, p = 0.014), and right LO (Z = 2.71, p = 622 

0.007). Even in those hemispheres showing non-significant effects the same numeric trend was 623 

observed, with recall peaks anterior to encoding peaks. In sum, rather than the peaks of 624 

recalled stimulus class overlapping with those of encoding, the greatest scene-object 625 

differences occur in a spatially separate set of voxels largely anterior to those during encoding. 626 

A searchlight analysis looking at information discriminability across the brain replicates 627 

this spatial separation (Figure 8). During encoding, scenes and objects are most discriminable in 628 

the same regions identified by the independent perceptual localizer (LO, pFS, PPA, MPA, OPA). 629 

However, during recall, peak discriminability visibly occurs in voxels anterior to these encoding-630 

based regions. A comparison of the peak voxel locations between encoding and recall 631 

confirmed that recall was significantly anterior to encoding in several regions (right PPA: Z = 632 

2.06, p = 0.039; left OPA: Z = 3.20, p = 0.001; left LO: Z = 2.61, p = 0.009; right LO: Z = 2.06, p = 633 

0.039; left pFs: Z = 2.21, p = 0.027), and numerically showing the same trend in others (left PPA, 634 

left and right MPA, right OPA). Next, we employed a cross-discrimination searchlight to identify 635 

regions with shared stimulus representations between encoding and recall. Again, areas 636 

anterior to those most sensitive during encoding showed highest similarity between encoding 637 



and recall representations. This anterior shift was significant in bilateral PPA (LH: Z = 3.30, p = 638 

9.83 × 10-4; RH: Z = 2.39, p = 0.017), bilateral OPA (LH: Z = 3.59, p = 3.34 × 10-4; RH: Z = 3.43, p = 639 

6.15 × 10-4), left pFs (Z = 2.38, p = 0.017), right LO (Z = 2.97, p = 0.003) and numerically showed 640 

the same trend in left LO, right pFs, and right MPA. 641 

These results suggest a spatial separation between encoding and recall with strongest 642 

reinstatement occurring outside of scene- and object-selective regions typically localized in 643 

visual tasks. 644 

 645 

 646 

 647 

Figure 8 – Whole-brain discrimination analyses for encoding, recall, and cross-decoding of information. Whole-648 

brain searchlight analyses investigating discrimination of objects versus scenes during encoding (top left), recall 649 

(top right), and cross-discrimination (bottom). Brighter yellows indicate higher discrimination indices. Outlined 650 
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ROIs are defined using independent stimuli in an independent localizer run. All maps are thresholded at p<0.005 651 

uncorrected, and unthresholded maps are also shown. The cross-discrimination searchlight shows regions that 652 

have a shared representation between encoding and recall.   653 

 654 

Discussion 655 

 In this work, we conducted an in-depth investigation of how and where recalled 656 

memory content for complex object and scene images is represented in the brain. First, we 657 

observed a striking difference in the representational structure between encoding and recall. 658 

While information in cortex during encoding reflected multiple levels of information, during 659 

recall we observed clear evidence for coarse-level information (objects versus scenes) as well as 660 

some fine-level scene information. No region showed mid-level information during recall (e.g., 661 

natural/manmade for scenes, tool/non-tools for objects), even though such information was 662 

often stronger than fine-level information during encoding. In hippocampus, we only observed 663 

coarse-level discrimination and only during encoding. Medial temporal lobe regions perirhinal 664 

cortex and parahippocampal cortex also only showed coarse-level discrimination, although this 665 

information was discriminable during both the encoding and recall periods. Second, a direct 666 

comparison between encoding and recall discriminability within ROIs found only weak 667 

correlations that were significant in a limited number of ROIs. When we further examined just 668 

the top discriminating voxels for encoding and recall, most regions showed no overlap between 669 

them, with only pFs showing higher overlap than chance. Finally, a whole brain comparison of 670 

encoding and recall discriminability revealed that the peaks for recall as well as the strongest 671 

encoding-recall similarity were spatially anterior to the peaks during encoding. Collectively, our 672 



results reveal key spatial and representational differences between encoding and recalling 673 

stimulus content. 674 

  The ability to decode scenes versus objects during recall is consistent with several 675 

findings showing broad stimulus class decodability during recall (Polyn et al. 2005; Reddy et al. 676 

2010; Boccia et al. 2019; O’Craven and Kanwisher 2000). Similarly, the ability to decode fine-677 

level information of individual scene categories is consistent with prior work showing decoding 678 

of specific stimulus images (e.g., Dickerson et al. 2007; Buchsbaum et al. 2012; Lee et al. 2012; 679 

Kuhl and Chun 2014). Additionally, we replicate several findings observing discriminability of 680 

different levels of information during perception (e.g., Mahon et al. 2007; Walther et al. 2009; 681 

Kravitz et al. 2011; Park et al. 2011). We did not find discriminability of object size in visual 682 

areas (Konkle et al. 2012) as expected, but this may reflect the range of sizes we selected, which 683 

were not as far apart as in prior work. We also find a significant ability to decode memory 684 

vividness and future recognition success from many cortical regions as shown in prior work 685 

(Supplementary Material S1, S2; Brewer et al. 1998; Wais 2008; Dijkstra et al. 2017; Fulford et 686 

al. 2018). However, at face-value the limited decoding we find during recall as well as the low 687 

encoding-recall similarity in category-selective cortex appear to be at odds with prior findings. 688 

We discuss each of these issues in turn in the paragraphs below. 689 

While we were able to discriminate coarse-level information in most areas and fine-level 690 

information in some areas during recall, we found no evidence for recall of mid-level 691 

information in any region. Prior work has primarily focused on these coarse- and fine-levels, 692 

and this absence of mid-level information suggests that imagery-based representations in 693 

cortex do not contain more information that generalizes across categories. Participants may be 694 



recalling limited image features, sufficient for fine-level classification of some specific image 695 

categories (e.g., retinotopic features shared across exemplars of a category), and sufficient for 696 

classification at the coarse level of scenes versus objects (given large differences between their 697 

features). However, the representations during recall may not contain more abstract 698 

information, such as features shared by items at a similar mid-level (e.g., size, function, qualities 699 

of a scene). This pattern of results is reflected not only in many category-selective areas, but 700 

also in early visual cortex, which is unlikely to represent these more abstract features. 701 

In terms of encoding-recall similarity, our results also appear to be inconsistent with 702 

some previous findings of sensory reinstatement, in which the neurons or voxels sensitive 703 

during encoding have been reported to show the same patterns during recall (Wheeler et al. 704 

2000; Danker and Anderson 2010; Buchsbaum et al. 2012; Johnson and Johnson 2014; Tompary 705 

et al. 2016; Schultz et al. 2019). In several visual and memory-related regions, we observed 706 

limited overlap between the sub-regions with peak encoding and those with peak recall 707 

information, with the strongest encoding-recall similarity in more anterior regions. However, 708 

some studies do report encoding-recall similarity within scene- and object-selective cortex (e.g., 709 

O’Craven and Kanwisher 2000; Johnson and Johnson 2014) which may be attributable to key 710 

methodological differences from the current study. First, as noted above, we targeted 711 

recollection of stimulus content rather than individual items. While scene- and object-selective 712 

regions may maintain item-specific visual information during both encoding and recall, our 713 

results suggest a difference in representations during encoding and recall at more generalized 714 

levels of information. Second, we employed an item-based recall task, rather than associative 715 

tasks commonly used to study recall (e.g., Ganis et al. 2004; Zeidman et al. 2015a; Xiao et al. 716 



2017; Jonker et al. 2018). This allowed us to ensure that information we decoded was not 717 

related to other factors such as decoding a cue or association. One potentially interesting 718 

question for future work is how strength of the memory representation (e.g., reported 719 

vividness) or task may modulate the degree of overlap between encoding and recalled 720 

representations. 721 

Our findings suggest a posterior-anterior gradient within cortical regions, in which 722 

recalled representations extend anterior to encoding or perceptual representations. These 723 

results agree with recent research showing that regions involved in scene memory are anterior 724 

to those involved in scene perception, with the possibility of separate perception and memory 725 

networks (Baldassano et al. 2016; Burles et al. 2018; Chrastil 2018; Silson et al. 2019a). This 726 

anterior bias for recall may reflect top-down refreshing of a memory representation in contrast 727 

to the largely bottom-up processes that occur during perception (Mechelli et al. 2004; Johnson 728 

et al. 2007; Dijkstra et al. 2019). Indeed, recent work using electroencephalography (EEG) has 729 

identified a reversal of information flow during object recall as compared to encoding (Linde-730 

Domingo et al. 2019). Alternatively, other research has suggested a gradient within the 731 

neocortex that reflects a split of conceptual information represented anterior (or downstream) 732 

to perceptual information (Peelen and Caramazza 2012; Borghesani et al. 2016; Martin 2016). 733 

While recent work shows highly detailed visual content within recalled memories (Bainbridge et 734 

al. 2019), it is possible recalled memories may be more abstracted and conceptual compared to 735 

their encoded representations. This recalled memory could thus contain less mid-level 736 

perceptual information or be abstracted into a different representation, explaining why we can 737 

decode memory strength but not fine-grained perceptually-defined distinctions (e.g., natural 738 



versus manmade) during recall. Collectively, our results support these two possible accounts for 739 

anterior-posterior gradients of memory/perception or conceptual/perceptual information in 740 

the brain, in contrast with other accounts claiming an identical representation between 741 

encoding and recall (e.g., Schultz et al. 2019). 742 

The current work also provides further support for a content-independent role of the 743 

hippocampus in memory. During encoding, we observe broad content selectivity in the 744 

hippocampus, as has been observed in other recent work claiming a perceptual role for the 745 

hippocampus (Zeidman et al. 2015b; Hodgetts et al. 2017). However, we do not observe strong 746 

evidence of any other content representations during encoding or recall; the hippocampus does 747 

not show sensitivity to more fine-grained information, and during recall, it does not even show 748 

differences at the broadest distinction of objects versus scenes. These results lend support for 749 

the notion that the hippocampus is largely content-independent (Davachi 2006; Danker and 750 

Anderson 2010; Liang et al. 2013; Schultz et al. 2019), with individual item decoding in previous 751 

work possibly driven by decoding of indexes within the hippocampus connected to fuller 752 

representations in the neocortex, or a coding of memory strength (e.g., Teyler and Rudy, Jonker 753 

et al. 2018). In fact, while stimulus content during recall is not discriminable, we find that 754 

memory strength is decodable from the hippocampus, mirroring similar results finding strength 755 

but not content representations in the hippocampus for oriented gratings (Bosch et al. 2014). 756 

There is also evidence to suggest that the hippocampus may require longer delays (e.g., several 757 

hours to a week) to develop decodable representations of memory content (Tompary and 758 

Davachi 2017; Lee et al. 2019), and so a similar experiment conducted with longer delays 759 

between study and test (e.g., days) may find decodable stimulus content from the 760 



hippocampus. These results in the hippocampus also serve as an interesting counterpoint to 761 

our findings in PRC and PHC within the medial temporal lobe. While these regions also do not 762 

show any mid- or fine-grained information, they show significant discrimination of coarse-level 763 

information during encoding, recall, and cross-discriminable representations between the two. 764 

These results support prior findings of category selectivity within these regions (e.g., Murray & 765 

Richmond 2001; Buckley & Gaffan 2006; Staresina et al. 2011) as well as work suggesting similar 766 

representations between perception and recall (Schultz et al. 2019). 767 

The current study combining nested categorical structure for real-world images and an 768 

item-based recall approach allows us to observe different levels of stimulus representations 769 

across the brain; however, there are limitations to this methodology that could be addressed in 770 

future work. In particular, the limited information and null findings during recall could partly 771 

reflect a lack of power reflecting the weaker signals during recall compared to encoding. 772 

However, from a combination of our results, we think issues of power alone cannot explain our 773 

findings. First, several regions during encoding show stronger mid-level discriminability than 774 

fine-level discriminability (e.g., PPA, pFs, and MPA for natural/manmade). However, these same 775 

regions show significant fine-level discriminability but not mid-level discriminability during 776 

recall, suggesting that the nature of the information present during recall is different, not just 777 

diminished. Second, our ability to decode recall vividness from most visual regions suggests 778 

decodable patterns of information are present during recall (Supplementary Material S1, S2). 779 

Third, our analyses uncovering separate peaks of encoding and recall also suggest that 780 

significant recall discriminability does exist, but in regions somewhat distinct from these 781 

perceptually-based ROIs. Finally, the current sample size (N=22) and number of trials (192 782 



stimuli) fall in the higher range compared to related studies (e.g., Lee et al. 2012: N=11; 783 

Johnson and Johnson 2014: N=16; Schultz et al. 2019: N=16). Another limitation of our current 784 

study is our inability to assess discriminability for individual images – our current methodology 785 

was designed to allow us to powerfully test stimulus content divorced from memory for 786 

individual items. Future studies should investigate whether individual item representations are 787 

identical between encoding and recall, even if more general content representations are not. 788 

Such findings could have meaningful implications on the nature of representations during 789 

recall, suggesting the imagery for an individual item is vivid enough to be item-specific, but 790 

results in a limited level of abstraction. Another question for future research will be a deeper 791 

examination of the different factors influencing encoding-recall similarity for each ROI. While 792 

the conjunction of our results in addition to the whole-brain analyses suggests a clear 793 

difference between encoding and recall, high encoding-recall correlations or low overlap in 794 

isolation could be attributed to alternate explanations. For example, high correlations between 795 

encoding and recall could be due to anatomical influences on voxel activity. On the other hand, 796 

at-chance overlap between encoding and recall could be due to high noise within an ROI. 797 

Finally, it will be important to see whether these newly defined anterior recall regions show 798 

more fine-grained representations of stimulus content during recall, and whether there may be 799 

region-specific differences (e.g., the MPA in particular has been a key target for comparisons of 800 

scene perception and scene recall; Burles et al. 2018; Chrastil 2018; Silson et al. 2019b). 801 

Examining item-based recall and representations of memory content in the brain has 802 

ultimately unveiled a rather complex, nuanced relationship of encoding and recall, with 803 

strongest encoding-recall similarity occurring largely anterior to scene- and object-selective 804 



visual cortex. In the study of memory, it is important to examine not only how we remember, 805 

but what we are remembering, and this study reveals that the way in which this content is 806 

manifested may vary greatly between encoding and recall.  807 
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