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SUMMARY

Boundary extension, a memory distortion in which
observers consistently recall a scenewith visual infor-
mation beyond its boundaries, is widely accepted
across the psychological sciences as a phenomenon
revealing fundamental insight into memory represen-
tations [1–3], robust across paradigms [1, 4] and age
groups [5–7]. This phenomenon has been taken to
suggest that themental representationofa scenecon-
sists of an intermingling of sensory information and a
schema that extrapolates the views of a presented
scene [8], and it has been used to provide evidence
for the role of the neocortex [9] and hippocampus
[10, 11] in the schematization of scenes during mem-
ory. However, the study of boundary extension has
typically focused on object-oriented images that are
not representative of our visuospatial world. Here,
using a broad set of 1,000 images tested on 2,000
participants in a rapid recognition task, we discover
‘‘boundary contraction’’ as anequally robust phenom-
enon. Further, image composition largely drives
whether extension or contraction is observed—
although object-oriented images cause more bound-
ary extension, scene-oriented images cause more
boundary contraction. Finally, theseeffects alsooccur
during drawing tasks, including a task with minimal
memory load—when participants copy an image dur-
ing viewing. Collectively, these results show that
boundary extension is not a universal phenomenon
and put into question the assumption that scene
memory automatically combines visual information
with additional context derived from internal schema.
Instead, ourmemory for a scenemay be largely driven
by its visual composition,with a tendency to extendor
contract the boundaries equally likely.

RESULTS

Boundary extension is a widely accepted psychological phe-

nomenon in which observers will recall an image as containing
Cur
visual information beyond the boundaries of the originally stud-

ied image. For example, when drawing a house from memory

(Figure 1A), observers will recall the house surrounded by space,

even though it is cropped by the image boundaries. This effect

has been taken to reveal deep insight into the nature of memory

representations, specifically how the brain automatically sche-

matizes visual information for scene memory [8–11], and is

considered so intrinsic to human cognition that it is included in

psychology textbooks [12–14] and in questions in the US Grad-

uate Record Examination (GRE) [15]. It is thought that during

initial viewing, the brain encodes a scenememory as an intermin-

gling of visual information from the image and a top-down scene

schema that extrapolates information beyond the visual bound-

aries. Then, when recalling the image, observers are unable to

differentiate sensory and schematic information in the memory

and recall a memory that contains both, extending the bound-

aries of the original image into the schema. However, despite

the emphasis on boundary extension as a scene-specific phe-

nomenon [8, 16], research has almost exclusively tested images

of one or a few central, close-up objects against a generic or

repeating background [2]. This is a narrow definition of a scene

and does not reflect our natural visual experience of scenes,

which are typically made of dozens of objects dispersed across

a spatial layout. In a prior study designed to measure the visual

information in memory (n = 30), we collected 407 drawings of a

variety of 60 scenes from memory [17] and obtained online

crowd-sourced scores of boundary transformation for each

drawing (Figure 1B). Surprisingly, only 55.0% of the images

showed boundary extension, although 43.3% showed the oppo-

site effect of boundary contraction. This led us to wonder

whether boundary extension is indeed ubiquitous across visual

scenes. Here, we test the extent of boundary transformations:

first, with a replication of [17] using a completely different para-

digm and, second, with two separate experiments testing a

new set of 1,000 photographs across 2,000 participants and

two judgment tasks.

First, we wanted to replicate the findings from [17] using a

different paradigm. Although boundary extension was originally

studied using drawings [1], recent studies have employed a rapid

serial visual presentation (RSVP) paradigm [4, 10]. One hundred

participants took part in an online experiment on Amazon

Mechanical Turk (AMT), in which they viewed an image for

250 ms, followed by a dynamic scrambled mask (250 ms), and

then viewed the original image a second time (Figure 1B). Impor-

tantly, participants did not know the two images were identical
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Figure 1. An Example of Boundary Extension and the Experimental Paradigms

(A) Three separate participants drew the same image of a house from memory (from [17]). All three participants extended the boundaries around the house,

drawing empty space above it and to the right and left, even though the house in the original image is truncated by the boundaries of the image.

(B) Depictions of themethods of the experiments described in the current study (see STARMethods). Data from three experiments from [17] are discussed: (1) the

Memory Drawing Experiment, in which participants drew scene images frommemory; (2) the Copying Drawing Experiment, in which participants copied images

while viewing them; and (3) the Boundary Transformation Judgment Experiment, where separate online workers judged the level of boundary transformation for

the drawings. In the current study, three experiments were conducted using the RSVP Recognition paradigm: (1) an experiment with the 60-image set; (2) an

experiment with the 1,000-image set, with 2 response options; and (3) a second experiment with the 1,000-image set, with 3 response options.

See Figure S1 for performance comparison across the Memory Drawing Experiment and RSVP Recognition paradigm.
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and reported whether the second image was closer or farther

than the first. Using this test, 51.7% of images showed boundary

extension, although 48.3% showed boundary contraction, with

no significant difference in the proportion (Pearson chi-square

test: p = 0.715). Further, there was a significant correlation in

boundary transformation score between the memory drawing

experiment and the RSVP recognition experiment (Spearman

rank correlation: r = 0.39; p = 0.0018), demonstrating that the ex-

istence of both boundary extension and contraction replicates at

the image level across paradigms (Figure S1).

Although examples of both boundary extension and contrac-

tion were observed in this set of 60 images, what patterns

emerge if we measure a large, diverse set of real-world images?

We assembled a set of 1,000 images (Figure 2A), with 500 each
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randomly and representatively sampled from two image data-

bases: Google Open Images (GOI) [18] and the Scene Under-

standing Database (SUN) [19]. We chose these two databases

given differences in the nature of the images; GOI contains 1.7

million object-oriented scenes, categorized by an object label

(e.g., flower and pillow) and often containing a single, central ob-

ject, similar to those used in prior boundary extension research.

Meanwhile, SUN is scene oriented, containing 131,000 images

representing 908 scene categories (e.g., castle and zoo). Using

these images, we conducted two large-scale RSVP recognition

experiments, the first employing a 2-option response (closer/

farther) and the second giving participants a third ‘‘same

distance’’ option, to see whether boundary transformations

emerged even if participants could report no change between
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Figure 2. Example Images and Boundary Transformation Distribution

(A) Examples from the 1,000 images and their labels used in the current study, originating from the object-oriented GOI database and the scene-oriented SUN

database. The object-oriented images tend to focus on the labeled object but sometimes contain other objects or perspectives. In contrast, the scene-oriented

images tend to be broad perspectives of a scene but sometimes contain central objects.

(B) Histograms of average boundary transformation rating for each image, averaged across two experiments (2-option and 3-option RSVP experiments).

Although object-oriented images, similar to those in previous boundary-extension experiments, find a high rate of boundary extension (93.2%), scene-oriented

images show equal rates of boundary extension and contraction (49.0% versus 49.8%, respectively). Histograms separated by experiment are shown in Fig-

ure S2.

(C) Results of consistency analyses on the boundary transformation scores across all images. The left shows a scatterplot of boundary transformation scores

across the two 1,000-image sets experiments (2-option and 3-option experiments), with the GOI images in green and the SUN images in purple. The boundary

transformation scores for the two experiments are significantly correlated (Spearman rank correlation). The right shows results of a split-half consistency analysis

on boundary transformation scores across all images and both experiments. The blue line indicates average boundary transformation scores determined by a

random half of the participants across 1,000 iterations, and the orange line indicates the average boundary scores from the other half of participants, sorted in the

same order. The gray line indicates the other half of participants sorted randomly. Group 1 and Group 2 are highly similar and significantly correlated,

demonstrating that participants are highly consistent in the boundary transformation ratings they make for a given image. Split-half consistency analyses

separated by experiment are shown in Figure S2.
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images. Each experiment had 1,000 participants, with 2,000

participants in total making judgments on the 1,000 images

(n = 200 per image). Given this broader and more representative

sampling of visual scenes, is boundary extension the primary

phenomenon?

Striking differences emerge for the two image sets (Figure 2B).

In each experiment, the 500 object-oriented GOI images show a

strong tendency for boundary extension, with 93.2% of images

on average showing extension and 6.8% showing contraction

(Pearson chi-square test: c2 = 746.5; p � 0). In contrast, the

500 scene-oriented SUN images show an even split, with

49.0% of images on average displaying extension and 49.8%

displaying contraction (c2 = 0.06; p = 0.800). Although this may

imply that boundary contraction is just as common as boundary

extension in these more naturalistic scenes, an alternate possi-

bility is that participants could not perceive a change and re-

sponded at chance or it could reflect across-participant vari-

ability. To address these possibilities, we conducted split-half

consistency analyses across 1,000 iterations to see whether

random halves of the participant pool showed agreement (see
STAR Methods) and applied the Spearman-Brown prediction

formula to quantify reliability of the entire image set.When partic-

ipants were forced to judge an image change (2 options), both

the object-oriented GOI images (Spearman-Brown reliability:

r* = 0.80; p < 0.0001) and scene-oriented SUN images (r* =

0.79; p < 0.0001) showed significant consistency in participant

responses. When participants could indicate no change (3 op-

tions), there was still significant consistency in participant re-

sponses for both the GOI images (r* = 0.76; p < 0.0001) and

SUN images (r* = 0.71; p < 0.0001). There was also a significant

correlation across experiments for all images (Spearman rank

correlation: r = 0.84; p = 6.80 3 10�267), as well as when split

into GOI images (r = 0.75; p = 4.38 3 10�92) and SUN images

(r = 0.72; p = 1.36 3 10�81). These results indicate that whether

an image extends or contracts is truly intrinsic to an image,

consistent across observers, experiments, and not due to

random responding (Figures 2C and S2). The data from these

two experiments were thus combined for all other analyses (in-

ternal split-half consistency when combined: r* = 0.92; p � 0).

We also examined consistency based on the proportion of times
Current Biology 30, 1–7, February 3, 2020 3
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Figure 3. The Influence of Image Composition on Boundary Transformation

(A) The images from the 1,000 image set showing the highest boundary extension and contraction, split by database. Sores range from �1 (extension) to 1

(contraction). Across databases, the images eliciting the most extension are images with few objects at a very close subjective distance from the observer, while

those eliciting the most contraction tend to be wide images of scenes.

(B) The location of objects within the top 200 images that show the most boundary extension and contraction. Each pixel is colored by the proportion of images

with an object at that pixel. Extending images tend to have a centrally located object, while contracting images tend to have a spread of objects along the lower

visual field.

(C) Scatterplots showing the relationship between average boundary transformation rating and four other metrics: number of objects in the image; subjective

ratings of distance to themain object (1, close to 5, far); average object area (total number of pixels) per image; and average object distance from the image center

(pixels). Statistics indicate results of Spearman’s rank correlations. Images that elicit more boundary extension have fewer, larger, centrally located, subjectively

close objects, while images that elicit more boundary contraction have several, smaller, dispersed, far objects. These results show that direction of boundary

transformation is highly related to image composition and that more traditional scenes cause more boundary contraction.
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images were placed into the same category (extension or

contraction) by random participant splits (across 1,000 itera-

tions). With the SUN images (which contain equal examples of

extension and contraction), both boundary extension and

boundary contraction show significant sorting agreement

(permuted estimates of chance; extension: M = 87.7%, p <

0.0001; contraction:M = 69.6%, p < 0.0001). In all, these results

indicate that although object-oriented images will tend to cause

boundary extension, scene-oriented images will have an equal
4 Current Biology 30, 1–7, February 3, 2020
tendency to elicit boundary extension or contraction, with high

agreement across observers. Thus, prior studies may have pri-

marily observed a boundary extension effect because they

sampled object-oriented images.

What is it about the images that makes some elicit boundary

extension and others contraction? Qualitatively, one can

observe (Figure 3A) that images that cause extension tend to

have few objects at a close-up perspective, although images

that cause contraction tend to have several objects at a farther
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Figure 4. Boundary Transformation Scores Replicate across Memory and Image-Copying Paradigms

(Left) A scatterplot comparing boundary transformation scores in the RSVP recognition task and a copying drawing task where participants copied an imagewhile

viewing it. Boundary transformation scores correlate significantly between tasks, with many images showing similar boundary transformations in both tasks.

(Right) Example drawings exhibiting boundary extension and contraction (circled in the scatterplot) by participants instructed to copy a photograph while viewing

it are shown.
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distance. We investigated the locations and sizes of the objects

in the images, using human-labeled annotations of object out-

lines from the GOI and SUN databases [18–20]. Average heat-

maps of object locations in the top 200 boundary-extending

and top 200 boundary-contracting images show a clear differ-

ence (Figure 3B): top-extending images contain central objects,

although top-contracting images have a greater spread of ob-

jects below the horizon. Further, the top boundary-extending im-

ages have few objects (M = 2.4 objects; SD = 4.2), in contrast

with boundary-contracting images (M = 15.4, SD = 13.7; inde-

pendent samples t test: t(397) = 12.78, p = 1.43 3 10�31). To

objectively quantify these patterns, we compared the boundary

transformation ratings across all 1,000 images to several image

metrics: number of objects; average object area; average object

distance from center; and subjective distance from the observer

to the most salient object (Figure 3C). There was a significant

positive correlation between boundary transformation rating

and number of objects (Spearman rank correlation: r = 0.58;

p = 1.63 3 10�90) and average object centricity (r = 0.44; p =

1.453 10�48) and a significant negative correlation with average

object area (r = �0.49; p = 4.323 10�62). To investigate subjec-

tive distance, participants in an online AMT experiment rated

‘‘how far away is the main object’’ in each image (n = 5/image),

on a scale from 1 (extreme close up) to 5 (far away) [21]. Subjec-

tive distance from the main object was significantly correlated

with boundary transformation rating (r = 0.76; p = 6.32 3

10�190). Thus, images with several, smaller, dispersed, and

distant objects are more likely to elicit boundary contraction,

while images with fewer, larger, more central, and close objects

are more likely to elicit boundary extension.

Finally, are these boundary transformations limited to memory

or do they occur even during a largely perceptual task? We
revisited the 60 scene images tested at the beginning of this

study, reanalyzing data from a copying drawing experiment

[17]. In this experiment, 24 participants were instructed to pro-

duce drawings of 30–35 scene images while viewing them,

with no time limit. This copying experiment had minimal memory

load, as participants had continuous access to the image and

had unlimited ability to correct their drawings. The resulting

728 drawings were scored on AMT (n = 7/drawing) for whether

they were closer or farther than the original image. Of these 60

images, significantly more showed contraction (63.3%) than

extension (35.0%; Pearson chi-square test: c2 = 9.64; p =

0.002; Figure 4). Importantly, boundary transformation scores

for copied drawings and memory drawings of an image were

significantly correlated (Spearman rank correlation: r = 0.64;

p = 3.81 3 10�8) as well as with its RSVP recognition boundary

transformation score (r = 0.54; p = 7.40 3 10�6). This shows

that boundary transformation score is consistent to an image,

whether measured with a memory task or a copying task with

minimal memory load.

DISCUSSION

In this study, we show that although boundary extension has

been considered a universal phenomenon of scene memory,

the opposite effect of boundary contraction is just as common

for naturalistic scene images. We also observed a strong rela-

tionship between boundary transformation and an image’s visual

composition, suggesting the effect may be largely driven by the

images themselves rather than scene category schemas of the

images. Further, we observe boundary distortions even during

minimal memory load (i.e., copying an image), suggesting that

this effect may not be memory specific.
Current Biology 30, 1–7, February 3, 2020 5



Please cite this article in press as: Bainbridge and Baker, Boundaries Extend and Contract in Scene Memory Depending on Image Properties, Current
Biology (2019), https://doi.org/10.1016/j.cub.2019.12.004
These results serve as clear evidence against the multisource

memory model originally used to describe boundary extension

[8]. This model suggests that a scene memory comprises an

intermingling of sensory information and a top-down extrapo-

lated scene schema. Accordingly, only boundary extension is

expected because it reflects a source monitoring error, in which

an observer cannot disentangle information from these multiple

sources and thus recalls more than observed. The current

study shows an equally strong phenomenon of boundary

contraction, which should not occur within this multisource

memory framework.

An alternate explanation could be a normalization process, in

which images are normalized toward a spatial scene schema

[16, 22]. In the domain of object perception and memory, a

consistent bias has been observed toward the normative size

for real-world objects [23]. In the domain of scene memory, a

regression to the typical scene-viewing distance has only been

reported after long delays (48 h), but not at shorter timescales

[24]. In the current study, boundary transformation scores

show the highest correlation with subjective image distance,

with the scenes rated an average subjective distance of

‘‘nearby/same room’’ (4–20 ft). Subjectively, far scenes thus

tend to contract and subjectively close scenes tend to extend,

possibly reflecting a transformation to the normative distance

at which we experience scenes. We observe boundary transfor-

mations even during minimal memory load, providing evidence

that any normalization may occur even during perception. How-

ever, future work is needed to precisely quantify the typical

viewing distances of scenes and systematically manipulate a

range of scene properties to test the normalization hypothesis.

It is also possible that processes during perception, such as

attentional capture by salient aspects of a scene, may contribute

to these boundary transformations.

Althoughboundaryextensionhasbeendescribedasaphenom-

enon innate to scene memory, we find that more typically scene-

like images result in boundary contraction. Images focused on

few, central, close objects elicit boundary extension, although im-

agescontainingseveral, dispersed,distant objects causecontrac-

tion. These high correlations between image-based metrics and

boundary transformation imply that previous neuropsychological

studiesofboundaryextension identifyinga role for scene-selective

cortex [9] and hippocampus [10, 11, 25] in scene memory extrap-

olationmay instead bemeasuring ametric correlatedwith bound-

ary transformations, like scene distance [21], size, or clutter [26].

Further, these correlations imply that boundary transformation is

highly predictable. Rather than boundary transformations solely

reflecting the outputs of an observer’s cognitive processes,

much of the effect may be determined by the inputs or the stimuli.

Other work has shown that memory is highly influenced by the

stimulus; e.g., images have an intrinsicmemorability generalizable

across observers [27, 28]. In the current study, we controlled for

memorability of the 60-image set [17] and found no difference in

boundary transformation score between memorable and forget-

table scene exemplars (independent samples t test: p = 0.359),

suggesting that the factors that influence boundary transforma-

tionsandmemorabilitymaydiffer. Futureworkwill need toaccount

for these stimulus effects (memorability and tendency to distort

boundaries) to fully understand the cognitive processes of the

observer.
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Although somework has reported boundary restriction (similar

to the boundary contraction that we report), this was only

during highly specific circumstances. For example, Intraub and

colleagues [29] found that observers contracted their memory

for wide-angled, object-oriented scenes after a 48-h delay but

experienced only boundary extension at shorter timescales. In

some other studies, boundary contraction has been observed,

but not focused on; for example, Chadwick and colleagues

[11] reported a significant proportion of trials showed boundary

extension, but close to 15% also displayed boundary contrac-

tion. Otherwise, boundary restriction has only been reported in

memory for emotional images [30, 31] and auditory stimuli [32].

The current study is the first work to show boundary contraction

is as immediate, automatic, and widespread as boundary

extension.

Finally, these results highlight the importance of continuously

revisiting assumptions in the psychological sciences and under-

score the necessity to always consider broad, representative

samples when making global inferences about the brain. The

key example images of boundary extension continue to be

used in the literature 30 years from discovery [1, 24], and the

numerous replications of the effect could in part be attributed

to the recycling of narrow stimulus sets. In fact, when we con-

ducted our original drawing study, we were surprised to observe

only a meager tendency toward boundary extension [17], given

the prominence of the effect in the literature. Importantly, it

was the diversity of the images in this study that allowed us to

realize that boundary extension only works with a limited view

of what constitutes a ‘‘scene image.’’ Sampling a spread of im-

ages that cause extension, contraction, and no boundary trans-

formation will be necessary to understanding how we form

mental representations of naturalistic images. As technology

continues to provide access to larger image sets and broader

populations, it is essential that we regularly re-examine psycho-

logical phenomena taken as fact.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Google Open Images Database V5 [18] https://opensource.google.com/projects/open-images-dataset

Scene Understanding (SUN) Database [19] https://groups.csail.mit.edu/vision/SUN/

Drawings of real-world scenes during free recall

reveal object and spatial information in memory

[17] https://dataverse.harvard.edu/dataverse/drawingrecall

Boundary transformation scores for 1,000 images This study https://osf.io/28nzt/

Software and Algorithms

MATLAB 2016a MathWorks RRID:SCR_001622

Amazon Mechanical Turk Amazon RRID:SCR_012854

Psytoolkit [33] https://www.psytoolkit.org/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Wilma Bainbridge

(Current e-mail: wilma@uchicago.edu). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Thirty healthy adults participated in theMemory Drawing Experiment, (21 female, average age 23.6 years, SD = 2.77) and 24 separate

adults participated in the Perceptual Drawing Experiment (14 female, average age 24 years, SD = 4.14). In-lab participants were

consented following the rules of the National Institutes of Health (NIH) Institutional Review Board (NCT00001360). 301 Amazon

Mechanical Turk (AMT) workers participated in the Boundary Extension Scoring, 100 workers participated in the 60-Image RSVP

Experiment, 2,000 workers participated in the 1000-Image RSVP Experiments, and 152 workers participated in the Distance Rating

Experiment. Workers did not indicate age/gender. AMT participants acknowledged participation following guidelines set by the NIH

Office of Human Subjects Research Protections (OHSRP). Twenty-three participants from the 2,000 workers in the 1000-Image

RSVP Experiments were removed for not responding, or responding too quickly on all trials (< 200ms). All participants were compen-

sated for their time.

METHOD DETAILS

The experiments reported in the current study are a mix of re-analyses of findings from [17] and new experiments. 60-Image Set

drawing data (for both memory drawings and copying drawings) and boundary transformation ratings were collected in [17].

RSVP scores for the 60-Image Set and all 1000-Image Set data (2 experiments with independent sets of 1,000 participants) were

collected in the current study.

60-Image Set Experiments: Drawing and RSVP
Stimuli

60 images from 30 scene categories (2 images each) were taken from the SUN Database [19]. Images were controlled to be counter-

balanced for image memorability [26], with one image per category of high memorability and one of low memorability, gathered from

the image memorability dataset in [34]. High and lowmemorability were defined as images at least 0.5 SD away from the mean in the

overall image distribution. Scene categories were chosen to be as maximally different as possible, and were chosen with a mix of

indoor (e.g., kitchen, conference room), natural outdoor (e.g., mountain, garden), and manmade outdoor categories (e.g., city street,

house). Images were resized to 512 pixels and shown at approximately 14 degrees of visual angle for the drawing tasks. Images were

presented at 350 pixels for the online RSVP task.

Memory Drawing Experiment

This experiment was originally conducted in [17]. Thirty in-lab participants studied 30 images on a computer screen (1 per scene cate-

gory) for 10 s each with an interstimulus interval (ISI) of 500ms. The 30 images were pseudo-randomly selected to be half memorable

and half forgettable images, counterbalanced across participants. Participants were instructed to study the images in as much detail

as possible, but did not know how they would be tested. Participants then completed a 11-minute difficult digit span memory task

where they had to study and then verbally recall 42 digit series ranging from 3-9 digits in length. Finally, participants were given 30
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blank squares on paper at the same sizes as the originally presented images and were instructed to draw the studied images in as

much detail as possible, in any order. Participants were given a black pen and colored pencils, and were allowed to label items that

were difficult to draw. Participants were given asmuch time as needed to complete their drawings. Finally, participants completed an

object-based cued recall task and a recognition task for these images; these results are not used in the current study. In spite of the

11-minute delay and 30 studied images, participants’ memory drawings contained large amounts of object and spatial detail [17].

Copying Drawing Experiment

This experiment was originally conducted in [17]. Twenty-four in-lab participants (separate from the Memory Drawing Experiment

participants) viewed 30 images (1 per scene category) presented on a computer screen and were told to draw each image on a blank

square (at the same size as the original image) on a sheet of paper in as much detail as possible. Images were pseudo-randomly

selected to be half memorable and half forgettable images, counterbalanced across participants. Participants drew one image at

a time, and when they said they were finished with a drawing, they continued onto the next image. They were given as much time

as needed to complete their drawings, and the image remained visible on the computer screen for the duration of their drawing

time. Participants were given the option to draw additional images (up to 35 total) if there was additional time.

Boundary Transformation Scoring

This experiment was originally conducted in [17]. 301 AMT participants judged the level of boundary transformation of the drawings

resulting from the Memory Drawing Experiment and the Copying Drawing Experiment. Participants saw a drawing and its corre-

sponding image and were asked to decide whether ‘‘the drawing is closer, the same, or farther than the original photograph.’’

They were told to ignore any extra or missing objects in the drawing. Participants responded on a 5-item scale (as in [10]) consisting

of: much closer, slightly closer, the same distance, slightly farther, and much farther. Participants could also indicate ‘‘can’t tell’’ if

they weren’t able to judge (e.g., if the drawing was incomprehensible). Seven AMT participants responded for each drawing, and

mean boundary extension rating was calculated for each drawing. Scores were then transformed to a scale of �1 (much farther =

extension) to +1 (much closer = contraction).

60-Image RSVP Experiment

This experiment was conducted for the current study to seewhether separate, recognition-basedmetrics of boundary transformation

replicate those of the drawing experiments. 100 AMTworkers participated in an experiment using a RSVP paradigm commonly used

to replicate boundary extension effects [4, 10] on online psychophysics experiment platform Psytoolkit [33]. For each trial, workers

saw an image presented for 250ms, followed by a 250msdynamicmask (5mosaic-scrambled images unrelated to the original image

presented for 50 ms each, at the same size as the original image), and then the original image was shown again. After 1 s, a response

screen came on asking if the second image was closer (scored as �1, or boundary extension) or farther (scored as +1, or boundary

contraction) than the first image.While participants believed the first and second imageswould have different levels of zoom, in reality

the first image was always the same as the second image. Participants were given up to 3 s to respond, and then the next trial started

after a 1 s fixation. Each participant saw all 60 images, and the experiment took approximately 4-5 minutes overall. Each image thus

ultimately received 100 ratings.

1000-Image RSVP Experiments

The two experiments reported here are specific to the current study (i.e., separate from the data from [17]).

Stimuli

A set of 1000 images were assembled to reflect a representative sampling of naturalistic photographs. 500 of the images were down-

loaded from object-oriented image set Google Open Images (GOI) [18], a dataset containing 1.7 million images from Flickr of 600

different object classes (e.g., apple, toy). The other 500 images were downloaded from scene-oriented image set Scene Understand-

ing (SUN) Database [19], a dataset containing 131,000 images from the Internet of 908 different scene categories (e.g., amusement

park, restaurant). Images were selected that were at least 3503 350 pixels in size, and only images provided with human-annotated

object outlines [20] were used. Low quality images, blurry images, artwork, clearly altered images, advertisements, watermarked im-

ages, and images with graphic material were all removed. Of the remaining images, one image was randomly sampled per category

(or two if all categories were exhausted). Note that some images also included people. This results in an image set that should be

generally representative of our experiences with images, including both images focused on objects, as well as images focused on

scenes. All images were center-cropped and resized to 350 3 350 pixels.

1000-Image RSVP Experiment 1

An almost identical experimental paradigm for the 1000-Image Set was used to the 60-Image RSVP Experiment and to previous

boundary extension experiments [4, 10]. Timing was identical, but each participant made judgments of whether images were closer

or farther (2 response options) for a random 100 images rather than 60 images, resulting in a total experimental time of 5-7 minutes.

1,000 people participated in this experiment, and each image thus received 100 ratings.

1000-Image RSVP Experiment 2

A second experiment was conducted identical to 1000-Image RSVP Experiment 1, except that participants had three response op-

tions: closer, same distance, or farther. This allowed participants to report that they experienced no difference between presentations

of the identical images. Each image received an additional 100 ratings from a new set of 1,000 participants.

Distance Rating Experiment

An AMT experiment was conducted to collect subjective ratings of the distance from the observer to the most salient object in each

image, to approximate the depth of the image. Five ratings were collected per image (n = 152 workers total), and workers were al-

lowed to rate as many images as they liked. For each image, they were asked to judge ‘‘How far away is the main object/thing in this
Current Biology 30, 1–7.e1–e3, February 3, 2020 e2
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picture’’? on a 5-point scale of: 1) extreme closeup, �0-2 ft; 2) arm’s length, �3-4 ft; 3) nearby / same room, < 20 ft; 4) short

walk, < 100ft; 5) far away, > 100 ft). This scale was adapted from [21]. Distance per image was taken as the average subjective rating

across participants.

QUANTIFICATION AND STATISTICAL ANALYSIS

Split-Half Consistency Analyses
All analyses were conducted usingMATLAB R2016a. Split-half consistency analyses were used to examine whether boundary trans-

formation ratings were consistent across participants for individual images. Across 1000 iterations, participants were split into two

random halves and sorted in the same image order. Mean boundary transformation score was then calculated for each image across

each participant half. The two halves were then Spearman rank correlated to estimate the degree to which participant ratings agreed.

Chance is calculated as the Spearman rank correlation between one half and the other half with a shuffled image order. Consistency

r* is measured as the average rank correlation across the 1000 iterations corrected with the Spearman-Brown prediction formula, to

give an estimate of consistency across the whole set of participants. P value is calculated as proportion of trials in which the chance

correlation was higher than the split-half correlation.

A split-half binning consistency analysis was also conducted to seewhether imageswere consistently binned as boundary extend-

ing or contracting. Across 1000 iterations, participants were split into two random halves. Across one participant half, the images

were sorted into boundary contracting (average boundary transformation score < 0) and boundary extending images (average

boundary transformation score > 0). The percentage categorization agreement was then calculated with the other half of participants;

resulting in a measure of what percentage of images are sorted into the same category by the other half.

Object Map Analyses
All images used in the 1000-Image RSVP Experiments include human-made annotations of the outlines of the individual objects in the

images [19, 20]. To create average object maps, we assembled the top 200 boundary extending (or boundary contracting) images,

and then calculated at each pixel the proportion of those images that contained an object at that pixel. ‘‘Objects’’ named ground, sky,

ceiling, wall, floor, background, and grass were not included in the analysis. Using these object outlines, we were also able to count

number of objects per image, and calculate other image properties. We computed average object area by taking the average number

of pixels contained within each object outline for a given image. Object centricity was calculated as average 2-dimensional Euclidean

distance between each object center of mass and the center of the image. Finally, average subjective distance from the observer to

the most salient object in the image was collected from the Distance Rating Experiment.

DATA AND CODE AVAILABILITY

The data generated during this study (images, drawings, boundary transformation scores, and image properties) will be made

publicly available with a link from the Lead Contact’s website as well as a repository on the Open Science Framework (https://

osf.io/28nzt/).
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