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Abstract 16 

 Humans are highly sensitive to the statistical relationships between features and objects 17 

within visual scenes. Inconsistent objects within scenes (e.g., a mailbox in a bedroom) instantly 18 

jump out to us, and are known to catch our attention. However, it is debated whether such 19 

semantic inconsistencies result in boosted memory for the scene, impaired memory, or have no 20 

influence on memory. Here, we examined the relationship of scene-object consistencies on 21 

memory representations measured through drawings made during recall. Participants (N=30) 22 

were eye-tracked while studying 12 real-world scene images with an added object that was 23 

either semantically consistent or inconsistent. After a 6-minute distractor task, they drew the 24 

scenes from memory while pen movements were tracked electronically. Online scorers 25 

(N=1,725) rated each drawing for diagnosticity, object detail, spatial detail, and memory errors. 26 

Inconsistent scenes were recalled more frequently, but contained less object detail. Further, 27 

inconsistent objects elicited more errors reflecting looser memory binding (e.g., migration across 28 

images). These results point to a dual effect in memory of boosted global (scene) but 29 

diminished local (object) information. Finally, we observed that participants fixate longest on 30 

inconsistent objects, but these fixations during study were not correlated with recall 31 

performance, time, or drawing order. In sum, these results show a nuanced effect of scene 32 

inconsistencies on memory detail during recall.  33 

 34 

Keywords: Saliency, binding errors, global scene processing, local scene processing 35 

  36 
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Introduction 37 

When we view a scene, we automatically parse many aspects of that scene—its overall 38 

gist, constituent objects, and their relations to each other and the greater scene layout (Oliva & 39 

Torralba, 2006; Fei-Fei et al., 2007). In exploring and understanding that scene, we are not only 40 

guided by its visually salient aspects (Zhao & Koch, 2013), but also by its interpretations—or 41 

meaning (Henderson & Hayes, 2017). Unsurprisingly, we parse a scene based on our 42 

expectations of that scene and its objects, utilizing what can be considered a “scene grammar” 43 

(Võ et al., 2019) that guides what types of objects go in what types of scenes. Thus, when we 44 

see scenes containing violations of this grammar—for example, when a beach ball is 45 

unexpectedly in a laboratory—they catch our attention. Such inconsistencies in object-scene 46 

semantics cause disruptions in our ability to process these images (Greene et al., 2015), and 47 

we tend to fixate on these inconsistencies during perceptual and visual search tasks (Loftus & 48 

Mackworth, 1978; De Graef et al., 1990; Henderson et al., 1999; Malcolm & Henderson, 2010), 49 

even when performing an irrelevant task (Cornelissen & Võ, 2017). 50 

However, even though observers fixate longer on inconsistent objects, it is unclear how 51 

scene consistency influences the later memory for that scene and its objects. Some research 52 

has reported no memory differences between inconsistent and consistent objects in scenes 53 

(Cornelissen & Võ, 2017) when encoded incidentally. Other work has reported boosted 54 

recognition and recall memory for inconsistent objects across both incidental and intentional 55 

memory tasks, along different time scales (Friedman, 1979; Pedzek et al., 1989; Hollingworth et 56 

al., 2001). Yet other work studying memory for object-location associations has reported an 57 

opposite effect of boosted memory for consistent objects (Draschkow & Võ, 2017). Given the 58 

varied results and divergent methods across these various studies, there is still a large open 59 

question of how object-scene semantics shape the memory representations for a scene. More 60 

broadly, beyond asking whether memory is impacted by scene semantics, little work has 61 
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specifically asked how that memory is impacted: what specific aspects of a scene’s memory are 62 

altered—memory for the entire image, the manipulated object, or the background scene?  63 

In the current study, we compare the underlying visual memory representations for 64 

inconsistent and consistent scenes using a visual recall drawing task. Previous work assessing 65 

the influences of scene semantics on memory have relied on verbal recall or visual recognition 66 

tasks (Friedman, 1979; Pezedk et al., 1989; Hollingworth & Henderson, 1998; Cornelissen & 67 

Võ, 2017). However, these types of measures may provide limited information about the nature 68 

of a memory – only revealing whether an item is remembered or not, but not what specific visual 69 

content of that memory drives its recollection. Recent work has discovered that using drawing-70 

based recall to quantify memory can reveal more fine-grained information than verbal 71 

recollection, and requires no assumptions about matched foil images, often necessary for visual 72 

recognition tasks (Bainbridge et al., 2019). Drawings have also been known to reveal valuable 73 

insight about the memories of children (e.g., Bruck et al., 2000; Otgaar et al., 2016), artists (e.g., 74 

Vogt & Magnussen, 2007; Perdreau & Cavanagh, 2015), and patient groups (e.g., Rey, 1941; 75 

Corkin, 2002). Thus, a drawing task may reveal subtler differences between memories for 76 

consistent and inconsistent scenes than was possible to capture in previous work utilizing 77 

verbal- or recognition-based tasks. Further, drawings can be objectively quantified through 78 

online crowd-sourced scoring to reveal a wide range of information, including object detail, 79 

spatial accuracy, and inclusion of false additional objects (Bainbridge et al., 2019). With such a 80 

task, we can thus examine not only whether an inconsistent object is remembered better than a 81 

consistent object, but how inconsistency impacts memory for other objects in the scenes, their 82 

spatial relations, and the scene overall. 83 

With these measures, we examined several questions for how scene semantics might 84 

influence memory representations. First, we consider how consistency affects recall of the 85 

manipulated object in the scene. One possibility is that inconsistent objects are distinctive and 86 

easier to remember (Friedman, 1979; Pedzek et al., 1989; Hollingworth, Williams & Henderson, 87 
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2001). Conversely, we might instead find that consistent objects better fit our scene schemas 88 

and thus are easier to remember, as has been found in work analyzing the role of consistency 89 

on scene construction (Draschkow & Võ, 2017). A third possibility is that we may observe no 90 

memory difference between inconsistent and consistent objects (Cornelissen & Võ, 2017). 91 

Second, we consider how consistency affects memory for the overarching image – do 92 

participants tend to draw inconsistent or consistent images more frequently from memory, 93 

regardless of their memory for the manipulated object? Finally, beyond memory for the 94 

inconsistent / consistent object or its encompassing image, we ask whether there is a difference 95 

in memory for the other objects in the scene (what we will hereby refer to as the “background 96 

scene”). On one hand, the heightened distinctiveness of an image owing to the presence of an 97 

inconsistent object could boost memory for the entire scene, including surrounding objects. On 98 

the other hand, these inconsistent objects could create a “spotlight” effect, capturing attention 99 

away from surrounding objects (Cornelissen & Võ, 2017) and reducing recognition for objects 100 

semantically unrelated to the inconsistent object (Auckland et al., 2007; Davenport, 2007). With 101 

this spotlight effect, we might also observe transpositions of objects that are semantically 102 

unrelated to their overarching image (Hannigan & Reinitz, 2003). Thus, by analyzing drawings 103 

made from memory, we can examine memory performance for the image, the manipulated 104 

object, as well as the background scene. Further, using both eye-tracking and computer-vision 105 

based saliency models during image encoding as well as pen-tracking during drawing recall, we 106 

can see whether we can replicate previous findings on increased fixations to inconsistent 107 

objects (e.g., Cornelissen & Võ, 2017), and whether fixation patterns during perception predict 108 

recall performance. 109 

To preview our results, we find an interesting trade-off in memory, in which semantically 110 

inconsistent images are recalled more frequently, but with less detail, and with weaker binding 111 

between the inconsistent object and the scene, resulting in transpositions of that object across 112 

images. Further, while we replicate the observation that individuals fixate inconsistent objects 113 
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during encoding, we find that recall patterns cannot be explained by fixation patterns or image 114 

saliency during encoding. 115 

 116 

Methods 117 

Participants 118 

Thirty adults (9 male, 21 female; age M=24.8 years, SD=4.5) were recruited from the 119 

local Washington D.C. area for participation in this within-subjects experiment. This sample size 120 

was determined a priori, to match the same sample size collected in a previous, similar drawing-121 

based experiment that measured high detail from memory drawings with only fifteen participants 122 

drawing any given image (Bainbridge et al., 2019). The current study also includes far fewer 123 

images to hold in memory (twelve versus thirty), thus we anticipate more drawings will be 124 

produced from memory per image, resulting in higher power per image than Bainbridge et al., 125 

2019. However, as this drawing recall methodology is very new, we hope the current study will 126 

serve as a basis upon which to conduct power analyses for future drawing studies. Participants 127 

were healthy native English speakers with corrected or normal vision, with the exception of 128 

participants with high-prescription glasses, who were not recruited, to avoid calibration issues 129 

with the head-mounted eye tracker. No participants or trials were excluded. All participants 130 

consented following the guidelines of the National Institutes of Health (NIH) Institutional Review 131 

Board (NCT00001360, 93M-0170) and were compensated for their participation. 132 

1,725 online scorers were recruited from online crowd-sourcing task platform Amazon 133 

Mechanical Turk (AMT), acknowledging their participation following the guidelines of the NIH 134 

Office of Human Subjects Research Protections (OHSRP), and were also compensated for their 135 

participation. The number of online scorers per task was selected to be identical to prior online 136 

scoring studies of drawings (Bainbridge et al., 2019; Bainbridge et al., 2021).  137 

 138 

Stimuli 139 
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 140 

Figure 1 – Two example sets of consistent and inconsistent scenes. (Left) A toy car or mop bucket in 141 

a bathroom or playground. (Right) A beach ball or a microscope on a swimming pool deck or in a 142 

laboratory. 143 

 144 

Stimulus images were created from twelve distinctive scene images from different scene 145 

categories, half indoor (bathroom, bedroom, classroom, kitchen, laboratory, laundry room) and 146 

half outdoor (campsite, construction site, neighborhood street, playground, swimming pool, 147 

backyard). The original object and scene images came from publicly available photographs on 148 

Google Images, found by searches of the scene category and object names. Adobe Photoshop 149 

was used to naturally add an object to each image (referred to throughout as the “manipulated 150 

object”) that was either consistent or inconsistent with the scene semantics (Figure 1). The 151 

scene images were paired, and these object manipulations were conducted within the pairs, so 152 

that the consistent object in a given image was also used as the inconsistent object in its paired 153 

image, and vice versa. For example, in the consistent condition, a lab scene contained a 154 

microscope and a pool scene contained a beach ball (Figure 1). In the inconsistent condition, 155 

the lab scene had a beach ball and the pool scene had a microscope. The consistent and 156 

inconsistent object were placed at the same size and in the same location within a given scene, 157 

and shadowing and lighting were added to each object to integrate it naturally with the 158 

surrounding scene. This resulted in a set of 24 stimuli, comprising of a consistent and 159 

Consistent Inconsistent Consistent Inconsistent
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inconsistent version of each of the twelve scenes (and, similarly, each of twelve objects had a 160 

consistent image and an inconsistent image). To confirm that we successfully manipulated 161 

scene consistency, all images were rated online by Amazon Mechanical Turk (AMT) workers 162 

(N=15 per image; N=67 total) on a 5-point Likert Scale on how typical (“normal”) it was for that 163 

object to be in the scene (1 = Very Abnormal, 5 = Very Normal). As expected, consistent objects 164 

were rated to be significantly more normal than inconsistent objects (Consistent: M=4.4 SD=1.1; 165 

Inconsistent: M=1.6 SD=1.1; Wilcoxon signed rank test: Z=2.20, p=0.028, effect size r=0.64). 166 

During the main experiment, each participant saw 12 images (one of each background scene), 167 

with half consistent images and half inconsistent images. Which images were consistent or 168 

inconsistent was counterbalanced across participants, so each of the 24 images was ultimately 169 

seen by fifteen participants, akin to Bainbridge and colleagues (2019). 170 

All 24 stimuli were annotated with outlines for every object by the authors in advance of 171 

the experiments, using online tool LabelMe (Russell et al., 2008). These annotations allow us to 172 

create object-based online scoring experiments, and compare drawings to ground-truth 173 

information of object size and location. Objects were defined as nameable, separable, visually 174 

distinct items, larger than a 50-pixel diameter. Visually uniform object parts were not labeled 175 

(e.g., the leg of a chair), but detachable components were (e.g., windows on a house). While the 176 

manipulated object was intentionally inserted to be a key object in the foreground, each scene 177 

contained multiple other foreground and background objects (M=39.3 objects, SD=20.5, 178 

Min=13, Max=77). 179 

 180 

Experimental Procedures 181 

At the beginning of the experiment, participants were told to carefully examine each 182 

image as they would be later tested on their memory. Participants were informed that this was a 183 

memory task, so that they were motivated to actively encode the image details for long-term 184 

memory. However, participants were unaware of the nature of the memory task, and were 185 
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unlikely to expect a drawing task, so they could not employ strategies specifically honed for 186 

drawing as a task. The experiment was split into four phases (Figure 2). 187 

The first phase was a study phase, in which participants viewed each of the images for 188 

10 seconds while their eye movements were tracked with a head-mounted EyeLink 1000 Plus 189 

eye-tracking device. Participants studied twelve images in total, determined as the average 190 

number of scenes recalled by participants in a prior memory drawing study (M=12.1 images, 191 

Bainbridge et al., 2019). We anticipated that twelve images per participant would maximize the 192 

power of our study; more images would likely result in a low recall rate for any given image, 193 

while fewer images could be too easy and reduce the experimental power. Between the 194 

presentation of each stimulus image, a fixation cross was displayed to the right of the image on 195 

the screen, in order to avoid biasing eye movements to the center. After the participant fixated 196 

on the cross, the next stimulus was then displayed. Each image was displayed at 1200 x 800 197 

pixels on a 1920 × 2000 resolution 24-inch screen. 198 

The second phase was a digit span distractor task intended to disrupt verbal working 199 

memory strategies. Participants saw a consecutive series of digits varying by 3-9 digits in 200 

length, and then had to repeat back the series of digits from memory when prompted. This 201 

repeated for 21 trials, and introduced an approximately 6-minute delay between the study and 202 

test phases. 203 

The third phase was the drawing recall test phase. Participants were given sheets of 204 

paper with a rectangular outline with dimensions matching those of the original images, and 205 

were asked to draw as many images as they could remember in as much detail as possible. 206 

Participants drew on a Wacom Paper Pro tablet, which allowed participants to draw with an 207 

inked pen on paper while it simultaneously recorded pen strokes digitally in real time. 208 

Participants were told to draw the images in any order. They were also given colored pencils if 209 

they wanted to include color detail in their drawings, but were asked to include color only if they 210 

specifically recalled it. They were instructed to add color after completing the pen drawing of all 211 
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the objects they recalled. Participants were also told they could label objects if they wished to 212 

clarify what they were. Participants were given as much time as they needed and took 27 213 

minutes on average for the recall phase (SD=8). 214 

In the fourth and final phase, participants completed a recognition phase, in which they 215 

made a series of recognition-based judgments of the images. They were shown the 12 scene 216 

images they studied randomly interspersed with 12 closely-matched foil scenes of the same 217 

scene categories. All scene images had a gray occluding ellipse covering the manipulated 218 

(consistent or inconsistent) object. Foil images had a gray occluding ellipse placed in a plausible 219 

similar location. First, for a given image, participants were asked if they had seen the scene 220 

during the study phase (scene recognition). If they said yes, they were presented with four 221 

object images and had to indicate which was the object they saw in that scene. The four choices 222 

of object images were: 1) the inconsistent object, 2) the consistent object, 3) a different 223 

exemplar from the inconsistent object category, and 4) a different exemplar from the consistent 224 

object category. This question tested both object category recognition (e.g., if you studied an 225 

inconsistent scene, did you falsely remember seeing a consistent object?), as well as specificity 226 

to the exemplar within the same category (e.g., did you remember that you saw that specific 227 

microscope in the scene, or a microscope in general?).  228 

 229 

 230 

Figure 2 – The experimental procedures. The experiment consisted of four phases: 1) A study phase in 231 

which participants studied 12 randomly ordered images (6 consistent, 6 inconsistent) for 10s each while 232 

1. Study Phase

12 images
10 s each 

(Eye-tracking)

4 6 9 8

(6 minutes)

3. Drawing Recall
Test Phase

(Pen-tracking)

Unlimited time

4. Recognition Phase

Did you see 
this image?

Which object was 
there?

2. Digit Span
Distractor Task
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their fixations were tracked, 2) A digit span distractor task in which participants had to verbally recall digit 233 

series, 3) A drawing recall test phase in which participants drew the studied scenes from memory while 234 

their pen movements were tracked, and 4) A recognition phase in which participants had to separately 235 

recognize the scene and the manipulated object. 236 

 237 

Online Scoring Procedures 238 

The resulting 275 drawings were scanned and uploaded to AMT, to crowd-source 239 

worker ratings on several properties of the memory drawings. Specifically, four different sets of 240 

measures were collected for each drawing. For all rating tasks, each AMT worker could 241 

participate in as many trials as they wanted. Depictions of the four online tasks can be seen in 242 

Figure 3, with the precise instructions given to AMT workers. AMT workers did not know the 243 

origins of these drawings, the different image conditions (i.e., consistent versus inconsistent 244 

scenes), nor the nature of the main drawing experiment. Drawings were also randomly mixed, 245 

so that if an AMT worker participated on multiple trials, they would not know if they were scoring 246 

drawings from the same (or different) person or conditions. Thus, AMT workers scored these 247 

drawings blind to the conditions. 248 

  249 
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A)  250 

 251 

B) 252 

 253 

Figure 3 – A) Example trials from the online experiments. Shown are depictions of example trials from 254 

the four online experiments: 1) Drawing Match Scoring, 2) Object Identification Scoring, 3) Object 255 
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Location Scoring, and 4) False Additional Object Scoring. B) Up-close view of highlighted objects. The 256 

Object Identification Scoring and Object Location Scoring tasks required online participants to compare a 257 

highlighted object with the drawings. Shown here are the close-up examples of objects highlighted in red 258 

from “Object Identification” (3A). Outlines were created a priori using LabelMe (see Methods). Online 259 

participants saw the full image when making responses (as in 3A). 260 

 261 

Drawing Match Scoring. AMT workers rated how well each drawing matched one of 262 

the images participants studied, providing a measure of diagnosticity of that drawing (Figure 3A, 263 

top left). For a given trial, they were presented with a drawing with an image next to it and rated 264 

on a 5-point Likert scale the likelihood that it was a drawing of that image (1= Definitely Not, 5 = 265 

Definitely). Across trials, drawings were tested against each of the 12 images seen by the 266 

participant who made the drawings. Twelve ratings were collected for each drawing-image pair 267 

(with a total of 144 ratings per drawing across the 12 pairs), and 611 AMT workers participated 268 

in total. The image with the highest match rating with a drawing (averaged across the 12 AMT 269 

workers for that drawing-image pair) was selected as the corresponding image (“original image”) 270 

for that drawing. To score overall image recall performance, each of the 12 images each 271 

participant saw was given a binary score (1 = was drawn, 0 = was not drawn) as determined by 272 

if a drawing was matched to it by the AMT scorers. Number of recalled images was calculated 273 

as the sum of those 12 binary scores. If a participant made multiple drawings of the same 274 

image, that image was only given a single score for being remembered. However, these 275 

duplicate drawings were scored for other measures (below) and their objects present were 276 

taken as the union across duplicates within participants (rather than us selecting a single 277 

drawing to be scored for a given image). Seventeen participants drew multiple drawings of the 278 

same image. 279 

Object Identification Scoring. For each drawing-image pair resulting as the highest 280 

match from the Drawing Match Scoring, AMT workers determined which objects from that image 281 
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were included in each drawing (Figure 3A, top right). For a given trial, they were presented with 282 

a drawing and five copies of the matched image with a different object highlighted on it. Objects 283 

were highlighted to AMT workers with a red outline, determined by the LabelMe outline created 284 

a priori (Figure 3B, see Stimuli). AMT workers had to click on which of those five objects (if any) 285 

were present in the drawing. Five AMT workers rated each object, and 679 AMT workers 286 

participated in total. Using these object outlines rather than object names of the objects allows 287 

AMT workers to decide on the presence of an object using object identity, detail, size, and 288 

spatial information—so that presence can be determined when there are multiple exemplars for 289 

a given object type (e.g., the multiple umbrellas in Figure 3A). The five objects shown to any 290 

given AMT worker were randomly selected and counterbalanced, so that across AMT workers, 291 

five ratings were collected for every single object from each image. Objects were determined to 292 

be in the drawing if at least three out of five workers said it was in the drawing. In analyses 293 

comparing object recall for consistent versus inconsistent scenes, one participant was excluded 294 

because they did not draw any consistent scenes. Participant recall performance for an image 295 

was measured as the number of objects they drew for a given image, divided the total number 296 

of objects present in that image. 297 

Object Location and Size Scoring. AMT workers determined the locations and sizes of 298 

each object present in the drawings. For a given trial, they were presented with a drawing and 299 

its matched image with an object highlighted on it. On the drawing, they had to place and resize 300 

an ellipse to encircle that specified object. Five AMT workers made ellipses for each object and 301 

453 AMT workers participated in total. The final ellipse was determined by the median centroid 302 

and radii in the x and y directions. This scoring was conducted for all objects determined to exist 303 

in a given drawing, based on ratings in the Object Identification Scoring. One participant did not 304 

draw any consistent scenes, and so they were not included in analyses comparing locations of 305 

objects in consistent versus inconsistent scenes. One participant also did not draw any 306 
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inconsistent manipulated objects, and so an analysis comparing the location and size of 307 

manipulated objects only included 28 of the 30 total participants. 308 

False Additional Object Scoring. AMT workers determined the presence of additional 309 

objects in the drawings that were not in the original images. For a given trial, they were 310 

presented with a drawing and its corresponding image and had to write down all objects that 311 

existed in the drawing but not the image. Fifteen AMT workers rated each image and 200 AMT 312 

workers participated in total. Any objects listed by at least five workers were counted as false 313 

alarms. 314 

 315 

Fixation, Pen-tracking, and Saliency Analyses 316 

 From the EyeLink 1000 Plus, we extracted eye movement patterns for each participant 317 

to each image, as a list of locations on the image and their fixation times. To obtain a metric of 318 

fixation time per object per participant, we computed the total fixation time across all pixels 319 

within a given object. We also looked at fixation order by object, by comparing the order in 320 

which the manipulated object had its first fixation in relation to the first fixation on all other 321 

objects (e.g., of all objects, was the manipulated object fixated first, second, etc?). A 322 

participant’s fixation order was then normalized by total number of objects in the drawing. 323 

 Using the tablet recordings of the pen movements, we also calculated amount of time 324 

spent drawing each manipulated object per participant. An in-lab scorer watched the video of 325 

pen strokes created by the drawing tablet for each drawing. The start and end time of pen 326 

strokes for the manipulated objects were noted for each image, for the first span of time in which 327 

the object was drawn. Time spent coloring objects was not included, as participants were 328 

instructed to add color after completing their drawing (and the tablet could not track colored 329 

pens / pencils). Object drawing time also did not include any time spent returning to add details 330 

to an object later. Total amount of time spent drawing the object was calculated as the 331 

difference between the end time and the start time, normalized by total amount of time spent on 332 
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the drawing. Similarly, we calculated sequential drawing order per participant by assigning an 333 

order to each object based on first pen stroke on that object. Drawing order was then 334 

normalized by total number of objects in the drawing. One participant was removed from the 335 

drawing time and drawing order analyses due to a technical glitch with the pen tablet software 336 

(resulting in N=29 for these analyses). 337 

 To compute image saliency scores, we used two state-of-the-art computer vision 338 

algorithms designed to predict human fixation time: DeepGaze II (Kümmerer, Wallis, & Bethge, 339 

2016) and Graph-Based Visual Saliency (Harel, Koch, & Perona, 2007). Both models aim to 340 

predict human fixations of an image, but DeepGaze II is a more recent approach that utilizes a 341 

wide range of feature types (i.e., both low-level and high-level visual information) and is trained 342 

on human fixation data, while Graph-Based Visual Saliency (GBVS) is a more established 343 

method commonly tested by attention researchers, that relies solely on image-computable low-344 

level visual features. Specifically, DeepGaze II predicts fixation time based on features from the 345 

VGG-19 deep neural network for object identification combined with a readout network trained 346 

for saliency prediction based on human fixations (Kümmerer et al., 2016). In contrast, GBVS is 347 

a model that identifies visually dissimilar regions of an image (Harel et al., 2007). We were 348 

curious to see if these two models would perform differently in their predictions of recall and 349 

fixation behavior, given current debates on the success of these models in predicting scene 350 

semantics (Hayes & Henderson, 2019; Pedziwiatr et al., 2021; Henderson et al., 2021). For both 351 

metrics, we obtained saliency heatmaps for each of the stimulus images (see Figure 8). Object-352 

based saliency was then calculated as the average saliency across the pixels of that object, 353 

normalized by the average saliency of the entire image. 354 

Finally, to generate heatmaps of recall for each image, we calculated a recall score for 355 

each object, calculated as the number of participants who drew that object, divided by the 356 

number of participants who drew the image containing that object. This allows us to create a 357 
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heatmap of how well different objects in an image were remembered, that can be directly 358 

compared to heatmaps formed from fixation patterns, pen movements, or saliency measures. 359 

 We thus have multiple values for each object in a given image: 1) fixation time on that 360 

object (averaged or by participant), 2) average time spent drawing that object (averaged or by 361 

participant), 3) fixation order on that object (by participant), 4) drawing order of that object (by 362 

participant), 5) an average GBVS saliency score of the object, 6) an average DeepGaze II 363 

saliency score of the object, and 7) proportion of participants recalling that object. Analyses 364 

were conducted at the levels of these different object scores, not on the heatmaps themselves.  365 

 366 

Data Analyses 367 

 For most analyses, we conducted paired samples t-tests within subjects to compare the 368 

above metrics between participants’ drawings of consistent scenes versus inconsistent scenes. 369 

We first tested these metrics for normality using a Kolmogorov-Smirnov goodness-of-fit test, and 370 

found none of these were significantly different from a normal distribution (all p>0.05). For 371 

metrics with limited ranges (e.g., Likert scales, number of drawings made), we instead 372 

conducted non-parametric paired samples Wilcoxon signed rank tests. Effect sizes are included 373 

with all significant statistical tests.  374 

 375 

Results 376 

 377 

Drawings are highly diagnostic of their images 378 

The first step is identifying what image each drawing corresponds to. Further, given the 379 

range of people’s drawing abilities and memory, can a separate group of participants tell what 380 

image a drawing represents? AMT workers saw individual drawings matched with each of the 381 

12 images studied by participants in the main experiment, and judged the likelihood that the 382 

drawing was of that image on a scale of 1 (Definitely Not) to 5 (Definitely). Overall, it was clear 383 
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to AMT workers what images matched the drawings, with only a single image getting a score 384 

above 3 on average (Figure 4). For all further analyses, the highest rated image was taken as 385 

the corresponding image for each drawing. Importantly, there was no significant difference in 386 

ratings between consistent and inconsistent images (Consistent: M=3.9, SD=0.5; Inconsistent: 387 

M=3.7, SD=0.6; Wilcoxon signed rank test: Z=1.70, p=0.090). This means that both 388 

semantically consistent and inconsistent drawings could be matched with their original images, 389 

and were equally diagnostic of their original image. However, this rating of diagnosticity serves 390 

as a relatively coarse metric, as several different features could contribute to being able to 391 

successfully match a drawing to an image (i.e., the manipulated object, properties of the 392 

background scene). A closer look at the content in these drawings may reveal key differences 393 

between consistent and inconsistent images. 394 

 395 

Figure 4 – Diagnosticity of the drawings across images for the two conditions. The average ratings 396 

made by online scorers of the similarity of participants’ drawings to each of the 12 images they saw, 397 

ranked from highest to lowest. Similarity here was assessed on a scale of 1 (low) to 5 (high) with a 398 
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question asking how likely it was that a drawing was of a given image (the “Drawing Match Scoring” 399 

experiment). Red bars indicate drawings made of inconsistent images, while blue bars indicate drawings 400 

made of consistent images. The high spike for image #1 and quick drop-off for images #2-12 (all 401 

averaging below a rating of 1.5) for both conditions indicates that it was clear to AMT scorers that a given 402 

drawing was highly similar to only one image and dissimilar from all others. In other words, drawings were 403 

highly diagnostic of their images. There was no significant difference in diagnosticity between consistent 404 

and inconsistent images. Error bars indicate standard error of the mean. 405 

 406 

More inconsistent scenes are recalled than consistent scenes 407 

The memory drawing experiment resulted in 275 total drawings, with 126 drawings of 408 

consistent images, and 149 drawings of inconsistent images (Figure 5). This reflects a general 409 

tendency to recall inconsistent images over consistent images (Chi-squared test for proportions: 410 

χ2=3.85, p=0.050, effect size φ=0.12). Each participant on average drew 9.2 drawings from 411 

memory out of the 12 that they studied (SD=2.16, Min=5, Max=12). Of those drawings, 412 

participants drew more inconsistent images than consistent images from memory (Wilcoxon 413 

signed rank test: Z=2.10, p=0.036, r=0.38), drawing on average 5.0 inconsistent images 414 

(SD=1.5) and 4.2 consistent images (SD=1.5). Thus, memory for inconsistent images overall 415 

was better than that for consistent images. 416 
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 417 

Figure 5 – Example drawings for four of the stimulus images. Two example drawings each for the 418 

consistent and inconsistent bedroom scene, and the consistent and inconsistent camp scene. Each 419 

drawing was taken from a different participant, showcasing the impressive level of both object and spatial 420 

detail in the memory drawings for a range of people. The key question in this study is whether there are 421 

differences in memory detail between drawings for the consistent and the consistent scenes. 422 

 423 

More objects are recalled in consistent scenes than inconsistent scenes 424 

Next, we looked at the amount of detail available in each drawing by having AMT 425 

workers judge which objects from the original image were included in each drawing. Each image 426 

contained on average 39.3 objects (with the same number of objects across the consistent and 427 

inconsistent versions of a given scene), and participants drew on average 9.0 objects per image 428 

(SD=2.9), or 77.6 objects on average across the experiment. Participants drew a significantly 429 

higher proportion of the objects in consistent drawings versus inconsistent drawings 430 

(Consistent: M=23.4%, SD=6.9%; Inconsistent: M=19.8%, SD=8.1%; Paired t-test, excluding 431 

the manipulated object: t(28)=2.56, p=0.016, d=0.52). We then looked to see whether there 432 
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were differences in the tendency to draw the manipulated object (the consistent or inconsistent 433 

object). We found no significant difference between consistent or inconsistent drawings in the 434 

proportion containing the manipulated object (Consistent: M=53.8%, SD=25.8%; Inconsistent: 435 

M=65.0%, SD=28.1%; t(28)=1.37, p=0.181). This indicates that while semantically inconsistent 436 

objects were recalled just as frequently as their consistent counterparts, there was reduced 437 

memory for objects in the inconsistent background scenes than consistent ones.  438 

 439 

The nature of object errors in consistent versus inconsistent scenes 440 

We then investigated whether there were differences between conditions in the types of 441 

object errors that were made in the drawings. Overall, participants included relatively few false 442 

additional objects in their drawings, only drawing 25 objects that did not exist in the consistent 443 

images (across the 126 drawings from all participants), and 21 objects that did not exist in the 444 

inconsistent images (across 149 drawings). Within participants, there was no significant 445 

difference in the number of false additional objects they drew for inconsistent scenes versus 446 

consistent scenes (t(29)=0.64, p=0.526). Thus, differences in scene semantics did not appear to 447 

induce differences in false memories in these drawings. 448 

However, participants made intriguing errors with the manipulated object in their 449 

drawings (see Figure 6). In 18 drawings (13 inconsistent, 5 consistent), participants made 450 

drawings of only the manipulated object, unable to recall the surrounding background scene. In 451 

6 drawings (6 inconsistent, 0 consistent), participants drew a detailed scene and included a 452 

circle with an unspecified object; they remembered that the manipulated object was there, but 453 

not what it was. Participants were not explicitly instructed to draw such “fuzzy” objects, so these 454 

occurred spontaneously by the participant. Finally, in 16 drawings (13 inconsistent, 3 455 

consistent), participants transposed the manipulated object so that it was in a different scene 456 

they had viewed. All of these errors occurred significantly more frequently for inconsistent than 457 

consistent scenes (Chi-squared test of proportions, Isolated Object: χ2=7.11, p=0.008, φ=0.63; 458 
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Unspecified Object: χ2=12.00, p=5.32 × 10-4, φ=1.41; Transposed Object: χ2=12.50, p=4.07 × 459 

10-4, φ=0.88). These results imply that a disruption of scene semantics may result in a looser 460 

binding in memory of that inconsistent object with its encompassing scene. 461 

 462 

 463 

Figure 6 – Examples of memory errors made by participants for the manipulated object. Each 464 

example is taken from a different participant. We identified three types of errors: 1) drawing the object in 465 

isolation (left), 2) drawing a detailed scene with a circle noting recollection of an unspecified object at that 466 

location but not its identity, and 3) transposing the object to a different scene. For the unspecified object 467 

errors, the text labeling the circle is included in larger font. These errors occurred overwhelmingly more 468 

often when objects were inconsistent with their background scenes (p<0.01 for all error types). 469 

 470 

Equally high spatial accuracy (location and size) in consistent and inconsistent images 471 

While there are differences in object memory based on scene semantics, are there also 472 

differences in spatial accuracy for the objects in the drawings? AMT workers indicated the size 473 

and location of each object in the drawing by drawing an ellipse on the drawing. With that 474 

ellipse, we calculated mean location error (centroid x and y error) and size error (radius x and y 475 

error) for each object. In both conditions, low amounts of spatial error were found, although 476 

errors were larger in magnitude in the Y-direction than the X-direction. Errors of object location 477 
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were transpositions of less than 11% of the size of the entire image (X-direction: Consistent 478 

M=2.2%, Inconsistent M=0.4%, Y-direction: Consistent M=9.3%, Inconsistent M=10.8%). Errors 479 

in size were on average less than 4% of an image’s pixels (Width: Consistent M=2.2%, 480 

Inconsistent M=2.0%; Height: Consistent M=2.9%, Inconsistent M=3.7%). For the manipulated 481 

object, there was no significant difference between consistent and inconsistent drawings in 482 

spatial accuracy, neither in terms of location accuracy (X-direction: t(27)=0.94, p=0.357; Y-483 

direction: t(27)=1.24, p=0.226), nor object size (Width: t(27)=0.51, p=0.613; Height: t(27)=1.34, 484 

p=0.191). There were also no differences between conditions in accuracy for location or size of 485 

the other objects in the scene (X-location: t(28)=1.18, p=0.249; Y-location: t(28)=0.93, p=0.361; 486 

Width: t(28)=1.24, p=0.227; Height: t(28)=1.43, p=0.163). These results indicate that 487 

manipulations of object semantics do not appear to affect spatial accuracy in memory. 488 

 489 

Comparing eye fixations, visual saliency, and recall 490 

Prior studies have observed an influence of scene semantics on fixation time across the 491 

scene (Loftus & Mackworth, 1978; De Graef et al., 1990; Henderson et al., 1999; Malcolm & 492 

Henderson, 2010). We examined whether there was a tendency for participants to fixate longer 493 

on the inconsistent objects in our paradigm. Further, we investigated whether fixation time and 494 

order (Figure 7) could be predicted by visual saliency of the image. Finally, we tested the 495 

degree to which these metrics related to recall of the information in the images. 496 

 497 
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498 

Figure 7 – Example average fixation heatmaps. Heatmaps showing examples of average fixation time 499 

(averaged across participants) for the consistent and inconsistent versions of two paired scenes where 500 

their objects were swapped (i.e., a watering can or laundry detergent in a backyard scene or a laundry 501 

scene). Red indicates higher total fixation time on average, and blue indicates lower total fixation time. 502 

For the backyard scene, the inconsistent detergent bottle causes more fixations than the consistent 503 

watering can. For the laundry scene, both the watering can and detergent bottle elicit more fixations. 504 

Fixation heatmaps are generated here for visualization purposes and were creating using EyeLink’s Data 505 

Viewer. However, analyses were conducted at the level of individual fixations, without smoothing.  506 

 507 

 We looked at fixation time for each participant for each object during the study phase, 508 

where they viewed each image for 10 s. On average, participants fixated for significantly longer 509 

on the inconsistent manipulated object than the consistent manipulated object (Inconsistent: 510 

M=1271.7 ms, SD=553.3 ms; Consistent: 725.4 ms, SD=365.4 ms; t(26)=5.44, p=1.05 × 10-5, 511 

d=1.17; three participants were not measured as fixating on the manipulated object). For the 512 

other objects in the scenes, participants spent numerically more time looking at them in the 513 

consistent condition than the inconsistent condition, but this difference was not statistically 514 
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significant (Inconsistent: M=6439.8 ms total across all other objects, SD=1126.8 ms; Consistent: 515 

M=6956.5 ms, SD=1101.5 ms; t(29)=1.97, p=0.059). There was also no difference in time spent 516 

fixating non-object regions of the image (Inconsistent: M=1592.2 ms, SD=1823.8 ms; 517 

Consistent: M=1592.2 ms, SD=1682.1 ms; t(29)=0.16, p=0.871). Thus there is no clear 518 

evidence that increased fixations on the inconsistent object detracted from fixations on other 519 

objects, preventing their encoding into memory. 520 

We then looked to see whether current state-of-the-art visual saliency algorithms 521 

DeepGaze II and GBVS could predict these fixation times (see Methods). Collapsing across 522 

conditions, we found a significant correlation between DeepGaze-predicted saliency and fixation 523 

time on the manipulated objects (Spearman’s rank correlation: ρ=0.634, p=0.001) as well as the 524 

same correlation for GBVS-predicted saliency and fixation time (ρ=0.634, p=0.001). However, 525 

there was no significant difference in either saliency score measure between inconsistent and 526 

consistent objects in the same scene (DeepGaze: t(11)=0.48, p=0.643; GBVS: t(11)=1.42, 527 

p=0.182). These results indicate that visual saliency may be able to partially account for fixation 528 

durations, but it does not show a clear relationship to semantic consistency; we discuss these 529 

implications later in the Discussion.  530 

 Next, we investigated whether these metrics could predict the proportion of people who 531 

recalled the manipulated object (Figure 8). We observed no significant correlation between 532 

mean fixation time across participants and recall proportion for each manipulated object 533 

(ρ=0.22, p=0.308). As a secondary analysis, we conducted an ANOVA across all manipulated 534 

objects, to see whether fixation time differed based on two factors: 1) whether than object was 535 

in a consistent or inconsistent scene, and 2) whether that object was recalled or not. For fixation 536 

time, we replicated our significant effect of consistency, where inconsistent objects were fixated 537 

longer (F(1,229)=14.30, p=1.99 × 10-4, η2=0.06). We also observed significantly higher fixations 538 

for objects that were recalled than those that were forgotten (F(1,229)=4.25, p=0.001, η2=0.02; 539 

Recalled: M=1308.5 ms, SD=1153.3 ms; Forgotten: M=923.5 ms, SD=862.9 ms), although we 540 
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observed no significant interaction (F(1,229)=0.39, p=0.53). Thus, fixation times do show some 541 

relationship to recall success, although this does not appear to be modulated by the consistency 542 

of an object with its scene. We also investigated the relationship of computational visual 543 

saliency to recall performance. We observed no significant correlation between recall proportion 544 

and DeepGaze-predicted saliency (ρ=0.137, p=0.524), nor GBVS-predicted saliency (ρ=0.201, 545 

p=0.346). For DeepGaze saliency, an ANOVA showed no significant difference between 546 

consistent and inconsistent objects (p=0.477), nor recalled or forgotten objects (p=0.525), nor a 547 

statistical interaction (p=0.284). Similarly, an ANOVA for GBVS saliency showed no significant 548 

difference between consistent and inconsistent scenes (p=0.244), nor recalled or forgotten 549 

objects (p=0.714), nor a statistical interaction (p=0.455). Thus, it does not appear that 550 

inconsistent objects were much more visually salient than consistent objects, and importantly, 551 

image-based saliency cannot account for differences in memory performance between the 552 

consistent and inconsistent objects. 553 

 554 

Figure 8 – Comparison of fixation time during study, visual saliency, and recall success. (Left) For 555 

each stimulus image, we looked at four types of information: 1) eye fixation times across the pixels of the 556 

image, 2) proportion of participants recalling each object in the image, 3) visual saliency of the image 557 

calculated using Graph-Based Visual Saliency (Harel et al., 2007), and 4) visual saliency of the image 558 

calculated using DeepGaze II (Kümmerer et al., 2016). (Right) Scatterplots of average fixation time with 559 
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the three other metrics (recall proportion, GBVS visual saliency, and DeepGaze II visual saliency). Each 560 

point represents one of the 24 stimulus images, and indicates the average score for the manipulated 561 

object. While saliency metrics were significantly correlated with fixation time, no measure was significantly 562 

correlated with recall success. Correlations reported here are Spearman’s ρ, with * indicating significant 563 

correlations. 564 

 565 

Comparing the temporal order of recall for consistent and inconsistent scenes 566 

In conjunction with recording eye movements during study of the images, we also 567 

recorded real-time pen movements during recall of the images (Figure 9). Participants did not 568 

spend a significantly different amount of time drawing the inconsistent versus consistent 569 

manipulated objects (Inconsistent: M=16.08 s, SD=7.75; Consistent: M=15.85 s, SD=11.26; 570 

t(27)=0.07, p=0.942), nor a significantly different amount of time drawing inconsistent versus 571 

consistent images (Inconsistent: M=2.03 min, SD=0.62; Consistent: M=2.28 min, SD=0.89; 572 

t(27)=1.53, p=0.139). There was also no significant difference in the order in which inconsistent 573 

versus consistent objects were drawn (t(25)=1.01, p=0.323). It was thus not the case that 574 

inconsistent objects were drawn for longer or drawn earlier. There was also no significant 575 

correlation at the level of the participant between amount of time spent fixating the manipulated 576 

object and amount of time drawing the manipulated object (Spearman’s rank correlation: 577 

ρ=0.21, p=0.130). Similarly, there was no significant correlation between fixation order and 578 

drawing order for the manipulated object (ρ=0.09, p=0.449). Thus, time spent during the 579 

drawing recall phase does not reveal clear differences between the inconsistent and consistent 580 

images, nor a clear relationship to fixations during study.  581 

 582 
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 583 

Figure 9 – Example of pen tracking output and recall order analyses. For each drawing, the pen 584 

tablet recorded a video of the pen strokes in order. This figure shows 5 ordered example frames from one 585 

drawing video of an inconsistent classroom scene (with a pile of logs). For the manipulated object, a 586 

scorer noted the order in which the object was drawn (normalized by total number of objects), and the 587 

length of time it was drawn for (normalized by total time spent on the drawing). 588 

 589 

Post-drawing recognition task performance 590 

 Finally, we also tested participants’ memory for the items using a visual recognition task 591 

following the drawing recall task. When tested for their recognition of each background scene 592 

(with the manipulated object concealed by a gray circle), participants had very high recognition 593 

accuracy regardless of whether the scene was originally consistent or inconsistent (Inconsistent: 594 

Mean hit rate=92.2%, SD=11.4%; Consistent: M=88.9%, SD=13.4%), with no significant 595 

difference between the groups (t(29)=1.00, p=0.326). There was also no significant difference in 596 

false recognitions of matched foil images from the same scene category (Inconsistent: Mean 597 

false alarm rate=11.2%, SD=14.8%; Consistent: M=10.0%, SD=11.2%; t(29)=0.45, p=0.656). 598 

Participants then were presented with four possible objects to fill in the obscured part of the 599 

image: 1) the inconsistent exemplar, 2) the consistent exemplar, 3) a different exemplar image 600 

Inconsistent object
6th object drawn
Drawn for 13 seconds

Total drawing duration: 2 min 54 sec

1 2

543
Total number of objects: 27 objects
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from the inconsistent object category, 4) a different exemplar image from the consistent object 601 

category. There was no significant difference between inconsistent and consistent scenes in 602 

participants being able to choose the correct item out of the four options (Inconsistent: Mean hit 603 

rate=28.2%, SD=20.9%; Consistent: M=26.5%, SD=14.6%; t(28)=0.39, p=0.697). There were 604 

also no significant differences in the types of errors made by participants. Participants across 605 

groups were equally likely to choose an object that appeared in another image (Inconsistent: 606 

M=27.1%, SD=19.1%; Consistent: M=23.5%, SD=18.5%; t(28)=0.79, p=0.434), or an object of 607 

the correct category but an incorrect exemplar (Inconsistent: M=18.3%, SD=16.6%; Consistent: 608 

M=24.8%, SD=18.3%; t(28)=1.34, p=0.192).Thus, while we measured differences in recall 609 

performance in the drawing task, clear differences in recognition performance did not appear. 610 

That being said, participants reported this object recognition task was difficult (occurring after 611 

the relatively effortful drawing recall task and with very closely-matched foil objects), and 612 

performance was relatively low. 613 

 614 

Discussion 615 

 In this study, we tested how memory representations may differ based on consistent or 616 

inconsistent object-scene semantics using a visual recall drawing task. We found that scenes 617 

containing inconsistent objects were recalled more often, but with less detail. Further, object-618 

scene inconsistencies resulted in a weaker binding between the object and its scene, with the 619 

inconsistent object sometimes drawn in isolation, with an unspecified object identity, or 620 

transposed into an entirely different scene. In contrast, while semantically consistent scenes 621 

were recalled less frequently, their successful recollections contained more object details, and 622 

fewer errors. 623 

 These results provide important evidence on the impact of object-scene semantics on 624 

memory (Friedman, 1979; Pedzek et al., 1979; Hollingworth et al., 2001; Draschkow & Võ, 625 

2017; Cornelissen & Võ, 2017). Using drawing as a memory output allows for a fine-grained 626 
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look at how object-scene semantics influence memory representations, and we observe a 627 

nuanced trade-off in which memory for the overall image is better, but memory for the objects 628 

within it is worse. This dual result could account for the fact that some work had previously 629 

observed diminished memory for inconsistent images (Draschkow & Võ, 2017) while others 630 

observed improved memory (Friedman, 1979; Pedzek et al., 1989; Hollingworth et al., 2001). In 631 

fact, both effects may be occurring simultaneously at different levels of stimulus information (i.e., 632 

the image, the objects, and the background scene). This simultaneous effect may be akin to the 633 

trade-off of capacity and precision observed in visual working memory (Roggeman et al., 2014), 634 

in which inconsistent scene semantics may result in higher capacity with less precision. Our 635 

findings also provide evidence for the contextual guidance model suggesting two parallel 636 

pathways for scene processing: one for gist-based global information and one for object-based 637 

local information (Torralba et al., 2006; Võ & Wolfe, 2015), as well as fuzzy-trace theory, which 638 

posits parallel storage and dissociable retrieval of verbatim versus gist information, which has 639 

been shown to parsimoniously account for several other findings of false memories (Brainerd & 640 

Reyna, 2002). While scene-object inconsistencies may result in a distinctive scene with boosted 641 

memory for the gist of the scene, they may prevent the ability to use a scene template to fill in 642 

local, precise object details (Malcolm & Henderson, 2009; Hollingworth, 2009). A disruption of 643 

the scene-object semantics may also result in looser binding of an object to its scene, resulting 644 

in a “spotlighting” on the inconsistent object (Cornelissen & Võ, 2017), and a tendency to 645 

migrate objects across memory episodes (Hannigan & Reinitz, 2003). Within memory, 646 

semantically inconsistent objects may impair abstraction of the scene from a schema template 647 

(Hock & Schmelkopf, 1980; Intraub, 1997), resulting in a loss of schema-coherent details. While 648 

the current study focused on the consistency of a single object with its greater scene, 649 

investigations of recall for more complex semantic manipulations (e.g., manipulating the 650 

semantic relationships of the objects to each other) may provide further insight on how 651 

semantics during perception influence the memory representation for a scene. 652 
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Considering the role of scene-object consistencies on memory has important real world 653 

implications in how we design scenes, and how we test memory. Some of the first seminal work 654 

looking at scene consistency and memory tested memory for real graduate student offices 655 

(Pezdek et al., 1989), and recent work has brought questions about scene memory into virtual 656 

reality (Helbing et al., 2020). It will be exciting to see whether our findings can help guide the 657 

design of real-world scenes, based on what aspects we wish to be memorable (Bainbridge, 658 

2019): a key object, all objects, or the gist of the scene. In some cases, one may want to 659 

enhance a specific object even at the cost of surrounding objects being forgotten, while in other 660 

cases, the goal will be to make an entire landscape memorable. Drawing is also a task that has 661 

been historically used as a clinical tool to measure patient groups (Rey, 1941; Corkin, 2002), 662 

and recent work has applied these same drawing quantification techniques to aphantasia, a 663 

condition of absent visual imagery (Bainbridge et al., 2021). The current task manipulating 664 

scene grammar could potentially reveal insight into groups with differing abilities at visual, 665 

semantic, or mnemonic processing, such as individuals across the lifespan. 666 

 While we observed differences in recall for consistent and inconsistent scenes, we also 667 

observed several similarities between memory representations for consistent and inconsistent 668 

scenes. Between these two conditions, recalled drawings tended to be equally diagnostic, have 669 

equally high spatial accuracy (in terms of both object location and size), and equally rare 670 

numbers of additional objects inserted into the drawings. We also did not observe differences 671 

between the two conditions in visual recognition performance (although this could be due to the 672 

difficulty of the recognition task). Thus, while scene semantics may influence some aspects of a 673 

memory (e.g., memory for other objects in an image), it may have less of a sway on other 674 

aspects of that memory (e.g., spatial accuracy). Indeed, various work has suggested differences 675 

in how object and spatial information may be coded in memory (Farah & Hammond, 1988; 676 

Staresina et al., 2011; Bainbridge, et al., 2021). While the current work investigates scene 677 

semantics, other work has suggested that scene syntax–the spatial arrangement of semantically 678 
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consistent objects within a scene–as similarly meaningful organizational principles for scenes 679 

(Võ et al., 2019). An experiment manipulating scene syntax rather than semantics (e.g., moving 680 

a consistent object to an inconsistent location) may result in higher spatial error but preserved 681 

object accuracy in memory. 682 

 While the current study serves as important evidence towards a dissociation of scene 683 

versus object memory for inconsistent scenes, some caveats of this work motivate future 684 

studies. We utilized stimulus images that were manipulated to appear natural regardless of the 685 

object consistency. However, future studies could explore similar methods using stimuli that 686 

prioritize systematic manipulation of the images (e.g., keeping object size, location, lighting, and 687 

shadowing consistent across all images), rather than naturalness of the stimuli. Further, while 688 

we decided a priori on a sample size validated from prior work (Bainbridge et al., 2019), some 689 

results showed small to medium effect sizes or null effects that would be valuable to replicate in 690 

follow-up research. A future study could also increase the number of images per participant in 691 

order to look at influences of saliency and fixation patterns on within-participant recall 692 

performance; however, we do note that participants may not be able to recall many more 693 

images. Also, as this task required detailed memorization of the scene, all visual information 694 

was highly task-relevant. However, prior research has shown that some tasks such as visual 695 

search can result in higher recall performance than explicit memorization (Draschkow et al., 696 

2014). It would be interesting to see if an incidental study task would drive even stronger 697 

differences between object and scene recollection. Relatedly, it would be interesting to see if 698 

different explicit instructions (such as telling participants to indicate vaguely remembered 699 

objects) would influence the information present in memory drawings. Finally, there are still 700 

many open questions about how drawing as a recall task itself may influence remembered 701 

information. Some work in children has shown that drawing of a memory can increase 702 

accurately recalled information, but it also has a tendency to increase false memories (Bruck et 703 

al., 2000; Otgaar et al., 2016). Other work has shown that artists are able to produce more 704 
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memory information than non-artists (Vogt & Magnussen, 2007; Perdreau & Cavanagh, 2015), 705 

potentially suggesting that different strategies may boost performance on the task. Thus, further 706 

investigation into the limitations as well as potential for drawing as a memory task will be highly 707 

important in future work. 708 

 Finally, our results also suggest attention- and fixation-based models may be insufficient 709 

models for recall. Here, we are successfully able to replicate findings suggesting that individuals 710 

fixate inconsistent objects during perception (Loftus & Mackworth, 1978; De Graef et al., 1990; 711 

Henderson et al., 1999; Malcolm & Henderson, 2010). We also observe significantly higher 712 

fixation times on objects that are recalled versus those that are forgotten. However, we do not 713 

observe that this effect is modulated by the consistency of the object. We also do not observe 714 

correlations between eye-tracking patterns during study and pen-tracking patterns during recall. 715 

In terms of computer-vision-based visual saliency metrics, we are able to replicate prior work 716 

showing that they can successfully model eye movements on an image (Harel et al., 2007; 717 

Kümmerer et al., 2016). We find that these saliency measures are not different between 718 

inconsistent and consistent versions of an object, suggesting consistency effects are not 719 

strongly driven by visual differences between conditions. That being said, while we had 720 

counterbalanced consistent-inconsistent pairs across participants, it is still possible the 721 

inconsistent images may have been more visually striking (e.g., a colorful beach ball in a 722 

monochromatic laboratory) and driven fixation behavior. Indeed, we wonder if semantically 723 

consistent objects tend to share low-level visual features, making it difficult to create equally 724 

salient inconsistent images. However, if image saliency were to drive recall performance, we 725 

would expect to observe a relationship between fixations during encoding and pen movements 726 

during recall, which we do not find. Thus, our findings are likely due to semantically driven 727 

differences in memory rather than visually driven differences. Prior work has found key 728 

differences between saliency-based predictions and recall, such as a lower visual field bias for 729 

object recall not present in saliency models (Bainbridge et al., 2019) as well as an inability for 730 
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saliency models to capture semantically meaningful portions of an image (Bylinskii et al., 2016; 731 

Henderson & Hayes, 2017). The current work highlights a need for image-based metrics aimed 732 

at making predictions specific to scene memory, accounting for semantic abstraction of the 733 

scene as well as what objects and features are memorable (Bainbridge, 2019). Future work 734 

could examine scenes with graded levels of inconsistency, in order to create more nuanced 735 

models that can account for both semantic inconsistency as well as visual saliency. 736 

 In sum, this study reveals a multiple-pronged impact of scene semantics on visual 737 

memory representations. While semantic inconsistencies result in highly atypical images that 738 

are remembered overall, these inconsistencies disrupt memory for local object detail in the 739 

scenes. 740 
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